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Matière active en dimension in�nie et calcul
stochastique appliqué aux intégrales de chemin.

Résumé
Ce travail de thèse se divise en deux parties distinctes. La première est consacrée aux

systèmes actifs de particules autopropulsées. Nous commençons par étudier le cas d’une
particule dans un potentiel. Nous analysons les déviations par rapport à la dynamique
d’équilibre de celle d’une particule active propulsée par un processus d’Ornstein-Ulhenbeck
(AOUP) à petit temps de persistance et en présence de bruit thermique ainsi que les pro-
priétés stationnaires d’une particule autopropulsées autour d’un obstacle sphérique dans la
limite de grand temps de persistance. Nous nous intéressons ensuite aux propriétés collec-
tives de ces systèmes. D’un point de vue analytique, leur compréhension est pour l’instant
entravée par leur di�culté intrinsèque qui combine celles des systèmes hors d’équilibre à
celles des liquides fortement corrélés. Depuis le milieu des années 1980, nous savons que
les fuides d’équilibres peuvent être étudiés analytiquement dans la limite où la dimension
de l’espace ambiant devient in�nie. Les gains mathématiques sont alors considérables : non
seulement l’énergie libre peut être calculée exactement mais aussi les coe�cients de trans-
port. Ces idées eurent ensuite une in�uence majeure dans la théorie de la transition vitreuse
en champ moyen. L’objectif ici est d’utiliser la limite de grande dimension dans le cas ac-
tif. Nous étudions d’abord les équations de la théorie de champ moyen dynamique dans la
limite diluée, ce qui nous permet de quanti�er la relation entre le déplacement quadratique
moyen et la vitesse e�ective d’autopropulsion. Pour étudier les propriétés des systèmes ac-
tifs au-delà de la limite diluée nous proposons ensuite un schéma approché de resommation
de la hiérarchie de Born-Bogolioubov-Green-Kirkwood-Yvon des fonctions de corrélation.
Celui-ci permet de rendre compte de nombreuses propriétés observées dans les systèmes ac-
tifs de dimension �nie, en particulier de la transition de phase induite par la motilité et de la
décroissance linéaire de la vitesse e�ective d’autopropulsion des sphères dures actives avec
la densité. Ces travaux nous conduisent à introduire le concept d’amplitude e�ective des in-
teractions potentielles. Nous montrons alors que celle-ci s’annule à la même densité que la
vitesse e�ective d’autopropulsion qui est aussi la densité de transition vitreuse dynamique
d’un système colloïdal d’équilibre de structure équivalente. Ces résultats dressent un par-
allèle intéressant entre la transition vitreuse des systèmes d’équilibre et l’annulation de la
vitesse e�ective d’autopropulsion des systèmes actifs qui est une propriété de la mesure sta-
tionnaire d’un système unique. La spéci�cité soulignée par cette resommation approchée
est la présence d’interactions multicorps dans la mesure stationnaire. Contrairement au cas
des liquides classiques d’équilibre, celle-ci ne peut en e�et pas s’écrire sous la forme d’un
produit sur les paires du système. L’importance de ces interactions multicorps dans le di-
agramme des phases des systèmes actifs a récemment été soulignée en dimension 3. Nous
continuons d’explorer cette idée en dimension in�nie en étudiant le diagramme des phases
de l’approximation dite de bruit coloré uni�é de la dynamique AOUP. Nous montrons que
celui-ci présente deux régions de coexistence de phase que les interactions de paires seules
ne peuvent expliquer. La deuxième partie de cette thèse porte sur des extensions du calcul
stochastique dans les intégrales de chemin et généralise des résultats récemment établis
dans le cas de processus unidimensionnels. Après avoir expliqué pourquoi il est en général
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impossible d’utiliser les règles du calcul stochastique pour changer de variable au sein des
intégrales de chemin en temps continu nous montrons comment modi�er ces dernières en
conséquence. En�n, nous proposons une discrétisation d’ordre supérieur étendant celle de
Stratonovich et rendant utilisable le calcul di�érentiel au sein des intégrales de chemin.

Mots clés : Physique statistique hors de l’équilibre, Matière active, Transition vitreuse, Champ
moyen, Intégrales de chemin, Calcul stochastique, Transition de phase.
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In�nite dimensional active matter and stochastic
calculus for path integration.

Abstract
The forthcoming work is divided into two distinct parts. The �rst one deals with self-

propelled particles systems. We start by studying the one particle in an external potential
case. We derive the nonequilibrium properties of the Active Ornstein-Ulhenbeck Parti-
cle model at small persistence time in the presence of thermal noise and the stationary
measure of a run-and-tumble particle around a hard spherical obstacle at large persistence
time. We then focus on the collective behavior of such systems. From an analytical stand-
point, not much is known given their high degree of complexity that combines those of
out-of-equilibrium physics to those of strongly correlated liquids. Since the mid-eighties
and Frisch’s & al. work, we have known that equilibrium �uids can be studied exactly in
the limit where the dimension of the embedding space becomes in�nite. The mathemati-
cal gains are then considerable: not only the free energy can be obtained analytically but
also transport coe�cients. These ideas later had a groundbreaking in�uence on the mean-
�eld theory of the glass transition which is naturally expressed in in�nite dimension. Here,
the goal is to use the large dimension limit to gain theoretical insights into the behavior of
active systems. The equations of the dynamical mean �eld theory are �rst studied in the di-
lute limit and we quantify the connections between the mean-square-displacement and the
e�ective propulsion speed. To go beyond the dilute limit, we then propose an approximate
resummation scheme of the Born-Bogolioubov-Green-Kirkwood-Yvon hierarchy of corre-
lation functions. The latter allows us to account for various properties observed in �nite
dimensional systems, in particular for the Motility Induced Phase Separation and for the
linear decrease with density of the e�ective self-propulsion speed of active hard spheres.
We also introduce the concept of e�ective amplitude of potential interactions. We then
show that this amplitude vanishes at the same density as the e�ective propulsion speed
which is also that of the dynamical glass transition of an equilibrium colloidal system with
equivalent structure. These results draw interesting links between the glass transition of
equilibrium systems and the vanishing of the e�ective self-propulsion speed which is a sta-
tionary property of a unique active system. The speci�city underlined by this approximate
resummation is the presence of multibody interactions in the steady state measure. Unlike
its equilibrium counterpart, it cannot be written as a product over the pairs in the system.
The importance of these multibody interactions in the phase behavior of active systems was
recently demonstrated in dimension 3. We keep exploring this idea by studying the phase
diagram of the uni�ed colored noise approximation of the AOUP dynamics. We show that
it displays two regions of phase coexistence that the sole pair interactions are unable to ac-
count for. The second part of the manuscript deals with the extension of stochastic calculus
to path integration and generalizes results recently obtained in the one-dimensional case.
After explaining why it is in general impossible to use the rules of stochastic calculus to
change variables within continuous time path integrals we show how to modify these rules
consequently. We �nally propose a higher-order discretization scheme extending that of
Stratonovich and making the rules of standard di�erential calculus compatible with path
integration.
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Matière active en dimension in�nie et calcul
stochastique appliqué aux intégrales de chemin.

Résumé substantiel

Ce travail de thèse se divise en deux parties distinctes. La première est dédiée à l’étude
d’une classe de modèles de matière active. Ce terme englobe un vaste ensemble de systèmes
qui ont en commun la capacité de leur constituants élémentaires à extraire et consommer de
l’énergie de leur milieu dans le but de se mouvoir. À l’échelle de la particule individuelle, la
dissipation et l’injection d’énergie suivent alors des processus physico-chimiques distincts
ce qui a pour conséquence immédiate de faire évoluer hors de l’équilibre jusqu’aux plus sim-
ples systèmes de particules actives en interaction. À l’échelle collective ou macroscopique,
la phénoménologie des systèmes composés d’un grand nombre de particules actives est de
ce fait extrêmement riche, suscitant ainsi l’intérêt des physiciens tout au long des trente
dernières années.

Les systèmes expérimentaux qui viennent le plus naturellement en tête sont pour la plu-
part issus du monde vivant comme illustré Fig. 1. On peut ainsi penser aux grands groupes
d’animaux tels que les vols d’étourneaux [9], les troupeaux de moutons [80] ou les bancs
de poissons [111] dont une des particularités remarquable est l’existence d’un mouvement
collectif à grande échelle. D’autres exemples existent aussi aux échelles cellulaires et sub-
cellulaires, à l’instar des bactéries auto-propulsées [173] qui peuvent, dans certaines circon-
stances, se regrouper en clusters denses. Il existe par ailleurs un nombre de plus en plus im-

(a) (b) (c)

Figure 1: Exemples de comportements collectifs dans le vivant. (a) Vol d’étourneaux. (b)
Troupeau de mouton. (c) Colonies de bactéries (Myxococcus xanthus). [173].

portant de systèmes expérimentaux synthétiques. Ceux-ci ont l’avantage certain d’être plus
contrôlés et reproductibles que les systèmes vivants. L’étude des particules Janus [207], des
colloïdes auto-propulsés par di�usiophorèse, est ainsi devenue centrale en matière active.
Par exemple, dans [19], celles-ci sont recouvertes sur un hémisphère seulement de carbone
et sont placées dans un mélange quasi-critique d’eau et de lutidine. Lorsqu’illuminé par un
laser de la bonne fréquence, l’hémisphère de carbone chau�e. Ceci induit alors localement
un déphasage de la solution ce qui, en retour, exerce une force phorétique sur les colloïdes.
Lorsque la densité de particules est su�samment grande, ces colloïdes, qui ne sont nulle-
ment attirés entre eux par aucune interaction potentielle directe, se regroupent alors en
cluster denses séparés par des régions presque vides comme montré Fig. 2.

Au sein de ce vaste ensemble de systèmes que forme la matière active, nous nous in-
téresserons dans cette thèse plus spéci�quement à une classe de modèles visant à décrire
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Figure 2: Formation de clusters denses de particule Janus à moitié recouverte de carbone
évoluant dans un mélange quasi-critique d’eau et de lutidine [19].

de la façon la plus simple possible la phénoménologie observée dans les expériences sur les
particules Janus. Ceux-ci sont dé�nis par les équations du mouvement à N -corps dans une
limite suramortie,

ṙi = vi(t)−∇riΦ(r1, . . . , rN) , (1)

chaque particule i évoluant ainsi sous l’action de (i) une force d’autopropulsion vi(t) et
(ii) une force conservative. L’énergie potentielle totale Φ est donnée comme la somme de
contributions à un corps (dans un potentiel extérieur V ) et de contributions à deux corps
(avec U pour potentiel de paire),

Φ(r1, . . . , rN) =
N∑

i=1

V (ri) +
∑

(i,j)

U(ri − rj) . (2)

En l’absence d’interaction, la particule libre, sous l’e�et de la force d’autopropulsion, suit
une marche aléatoire persistante. On trouve di�érentes façons de modéliser la statistique
de celle-ci dans la littérature en matière active. Par exemple, dans le cas des particules
browniennes actives (ou ABP pour Active Brownian Particles), vi(t) = v0ui(t) où ui(t) est
de norme unité et di�use librement sur la sphère, voir Fig. 3. Dans le cas des particules dites
de type RTP (pour Run-and-Tumble Particles), vi(t) = v0ui(t) où ui(t) est de norme unité
et est aléatoirement et uniformément tiré sur la sphère avec un temps caractéristique τ
de sorte que le mouvement d’une particule libre est constitué d’une séquence d’excursions
balistiques aléatoirement réorientées, voir Fig. 3.

Figure 3: Trajectoire d’une particule libre (Gauche) de type RTP et (Droite) de type ABP.
Extrait de [24].
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Dans la limite où la longueur de persistance du marcheur aléatoire libre devient nég-
ligeable devant la portée typique des interactions potentielles (tout en conservant un coef-
�cient de di�usionD �ni), le système àN -corps dé�ni par l’équation Eq. (1) est bien connu
puisqu’il s’agit d’un système colloïdal d’équilibre. La distribution stationaire associée est
en particulier donnée par la distribution de Boltzmann à température D, PS ∝ e−Φ/D.
La nature active du système devient manifeste dès lors que la longueur de persistance est
de l’ordre de (ou grande devant) la portée des interactions potentielles. Faire des prédic-
tions analytiques dans ce régime n’est cependant pas chose facile, la solution stationaire
de l’équation maîtresse associée à la dynamique décrite dans l’équation Eq. (1) étant en
général hors de portée. Grâce à de nombreux travaux numériques [39, 162], le diagramme
des phases des modèles de particules actives interagissant via un potentiel de paire répul-
sif de courte portée est néanmoins bien connu. Lorsque l’activé (quanti�ée par le rapport
entre la longueur de persistance de la particule libre et la portée du potentiel de paire) et
la densité sont su�samment grande, le système devient inhomogène et se sépare en deux
phases, l’une dense et l’autre diluée [193] et ceci en dépit du fait que les interactions poten-
tielles entre particules soient purement répulsives : c’est la séparation de phase induite par
la motilité (ou MIPS pour Motility-Induced Phase Separation).

Dans cette thèse, ces systèmes sont étudiés analytiquement avec pour objectif de gag-
ner en compréhension quant à leur comportement macroscopique. L’approche que nous
adoptons est celle d’une complexité qui augmente tout au long du manuscrit. Nous com-
mençons ainsi par étudier le cas d’une particule dans un potentiel extérieur. Nous analysons
d’abord les déviations par rapport à la dynamique d’équilibre de celle d’une particule active
propulsée par un processus d’Ornstein-Ulhenbeck (AOUP) à petit temps de persistance et
en présence de bruit thermique. Nous montrons en particulier que le courant de probabilité
et le taux de production d’entropie peuvent être, suivant le potentiel extérieur, des fonc-
tions non-monotones de la température tranduisant ainsi une relation non-triviale entre
le bruit actif et le bruit thermique. Dans un second temps, nous calculons la distribution
stationaire d’une particule autopropulsée autour d’un obstacle sphérique dans la limite de
grands temps de persistance. Ces résultats mettent en exergue comment la persistance de la
force d’autopropulsion peut induire une attraction e�ective entre la particule et l’obstacle.
Celle-ci se manifeste notamment à travers l’existence, dans la distribution stationnaire, d’un
delta de Dirac au contact. Nous nous intéressons ensuite aux propriétés collectives de ces
systèmes. D’un point de vue analytique, leur compréhension est pour l’instant entravée
par leur di�culté intrinsèque qui combine celles des systèmes hors d’équilibre à celles des
liquides fortement corrélés. Depuis le milieu des années 1980, nous savons que les �uides
d’équilibres peuvent être étudiés analytiquement dans la limite où la dimension de l’espace
ambiant devient in�nie. Les gains mathématiques sont alors considérables : non seule-
ment l’énergie libre peut être calculée exactement mais aussi les coe�cients de transport.
Ces idées eurent ensuite une in�uence majeure dans la théorie de la transition vitreuse en
champ moyen. L’objectif ici est d’utiliser la limite de grande dimension dans le cas actif.
Nous étudions d’abord les équations de la théorie de champ moyen dynamique dans la lim-
ite diluée, ce qui nous permet de quanti�er la relation entre le déplacement quadratique
moyen et la vitesse e�ective d’autopropulsion. Pour étudier les propriétés des systèmes ac-
tifs au-delà de la limite diluée nous proposons ensuite un schéma approché de resommation
de la hiérarchie de Born-Bogolioubov-Green-Kirkwood-Yvon des fonctions de corrélation.
Celui-ci permet de rendre compte de nombreuses propriétés observées dans les systèmes ac-

vii



tifs de dimension �nie, en particulier de la transition de phase induite par la motilité et de la
décroissance linéaire de la vitesse e�ective d’autopropulsion des sphères dures actives avec
la densité. Ces travaux nous conduisent à introduire le concept d’amplitude e�ective des in-
teractions potentielles. Nous montrons alors que celle-ci s’annule à la même densité que la
vitesse e�ective d’autopropulsion qui est aussi la densité de transition vitreuse dynamique
d’un système colloïdal d’équilibre de structure équivalente. Ces résultats dressent un par-
allèle intéressant entre la transition vitreuse des systèmes d’équilibre et l’annulation de la
vitesse e�ective d’autopropulsion des systèmes actifs qui est une propriété de la mesure sta-
tionnaire d’un système unique. La spéci�cité soulignée par cette resommation approchée
est la présence d’interactions multicorps dans la mesure stationnaire. Contrairement au
cas des liquides classiques d’équilibre, celle-ci ne peut en e�et pas s’écrire sous la forme
d’un produit sur les paires du système. L’importance de ces interactions multicorps dans le
diagramme des phases des systèmes actifs a récemment été soulignée en dimension 3 [202].
Nous continuons d’explorer cette idée en dimension in�nie en étudiant le diagramme des
phases de l’approximation dite de bruit coloré uni�é de la dynamique AOUP. Nous mon-
trons que celui-ci présente deux régions de coexistence de phase que les interactions de
paires seules ne peuvent expliquer.

La deuxième partie de cette thèse porte sur des extensions du calcul stochastique dans
les intégrales de chemin et généralise des résultats récemment établis dans le cas de proces-
sus unidimensionnels [28, 29]. Depuis leur formalisation par Wiener [208] et les travaux
ultérieurs de Feynman [52], les intégrales de chemin sont devenus un outil fondamental en
physique théorique, des hautes énergies à la matière molle. Leur utilisation est néanmoins
entravée par l’existence de nombreuses di�cultés mathématiques. Certaines de celles-ci
se retrouvent au niveau des équations di�érentielles stochastiques. Du fait de la non dif-
férentiabilité du mouvement Brownien, il est en e�et bien connu que, contrairement aux
équations di�érentielles ordinaires, une prescription de discrétisation est nécessaire pour
donner sens aux équations di�érentielles stochastiques à bruit multiplicatif. En particulier,
ceci conduit à introduire les règles du calcul stochastique, dont le fameux lemme d’Itō, qui
généralisent le théorème de dérivation des fonctions composées. Dans ce manuscrit, nous
commençons par rappeler la construction de la représentation dite de Onsager-Machlup en
intégrale de chemin des processus stochastiques di�usifs dans la discrétisation α [103] et
nous expliquons, suivant Edwards et Gulyaev [45], que le théorème de dérivation des fonc-
tions composées n’est pas applicable au niveau de l’action en temps continu, et ce même si
celle-ci est construite à partir de la discrétisation de Stratonovich. Nous montrons égale-
ment que les règles du calcul stochastique établies dans le cas des équations di�érentielles
stochastiques ne sont pas non plus applicables en général au niveau de l’action en temps
continu. Nous expliquons alors comment les étendre de manière à traiter le terme cinétique
ẋ2 apparaissant dans le poids trajectoriel. Dans la dernière partie de cette thèse, nous inver-
sons la perspective et nous demandons s’il est possible de construire une discrétisation de
l’intégrale de chemin telle que celle-ci soit manifestement covariante en temps continue et
donc que le théorème de dérivation des fonctions composées puissent s’appliquer directe-
ment. Nous rappelons les travaux de deWitt [36] et Graham [87] qui proposent d’exprimer
le propagateur in�nitésimal à partir d’une action covariante évaluée le long du chemin clas-
sique, in�nitésimal lui aussi, ayant les bonnes conditions aux limites. Nous proposons en�n
une discrétisation d’ordre supérieur, quadratique dans les incréments ∆x, et étendant celle
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de Stratonovich, qui permet de rendre utilisable le calcul di�érentiel ordinaire au sein des
intégrales de chemin en temps continu. L’ensemble de ces résultats sont obtenus pour des
processus stochastiques de dimension arbitraire d �nie et soulèvent de nombreuses ques-
tion quant à leur généralisation aux théories des champs correspondant formellement à la
limite d→∞.
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Chapter 1

Introduction

More is di�erent.

– Philip W. Anderson

What are the emerging macroscopic properties of systems made up of many interacting
particles 1 ? Answering this question and thus bridging the macroscopic world to the mi-
croscopic one is the formidable task of statistical physics. The �eld was born in the second
half of the XIXth century, at the instigation of Maxwell, Gibbs and Boltzmann to mention
but a few, to link thermodynamics and Newton mechanics and explain the thermodynamic
behavior of �uids seen as collections of (nearly) in�nitely many interacting atoms. Its scope
is today much larger than at the origin and encompasses subjects as diverse as, for instance,
superconductivity [10], glassy physics [25], magnetism [152], chemical reactions [104] and
active matter [178] that will be one of the main topics of the present thesis. Ideas stemming
from statistical physics have even had far-reaching consequences in domains traditionally
outside the scope of physics where the interacting particles can be neurons in the brain
[76], species in large ecosystems [147], agents in a model economic system [156], or, as it
is a topical issue today, contagious and healthy people in disease propagation [23].

One of the key facts in statistical physics is that large scale properties of many-particle
systems may not be understood in terms of a mere extrapolation from the small systems
ones. How one could guess, just by looking at the behavior of a few H2O molecules, that
water just above 0°C would be liquid and �ow while it would freeze and solidify just be-
low ? This is an example of a phase transition, a ubiquitous notion in statistical physics
that designates the existence of a sharp and qualitative transition in the properties of the
system (quanti�ed by order parameters) as an external parameter (here the temperature)
is slightly varied. This also illustrates the idea of symmetry breaking which refers here
to the fact that, in some region of parameter space, matter at the macroscopic scale may
not exhibit the symmetries that dictates its behavior at the microscopic one. In our previ-
ous example, the dynamics of an ensemble of water molecules is described by rotationally

1The word particle here is understood in the very generic sense of constitutive element.
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and translationally invariant equations, meaning that there is no privileged direction nor
location put by hand from the outside, and yet, in ice, water molecules self-organize in a
crystalline lattice that breaks these two symmetries. Mathematically speaking, symmetry
breaking can only occur in the thermodynamic limit where the number of particles in the
system is in�nite. In large but �nite-size systems the symmetry appears to be e�ectively
broken on experimental time scales. While phase transitions and symmetry breaking are
common in our everyday experience of the physical world, they escape the simple intuition
solely based on the behavior of few particle systems. These phenomena emerging at large
scales challenge the reductionist approach and are the main mechanisms responsible for
the qualitative di�erences between small systems and very large ones. "More is di�erent"
coined Philip W. Anderson in 1977 [6].

Given the extraordinary complexity of the many-particle systems that are of interest
in statistical physics, experiments and numerical simulations play a role of paramount im-
portance in exploring and understanding their properties. The role of theoretical physics
is then to provide the tools to grasp and apprehend these properties that would sometimes
escape our intuition otherwise often based on the behavior of small systems. One approach
is to devise microscopic models in which the extraordinary complexity of the real physical
world in reduced at its maximum and that keep only the very few relevant ingredients that
account for the macroscale phenomenology. The goal is therefore not to give an accurate
description of a particular real system (e.g. a particular piece of ice), but rather to give an
intelligible description of the backbone of the experimentally observed phenomenology.
The still ubiquitous presence of the Ising model [101], not only as a pedagogical tool but
also in the scienti�c literature, demonstrates how fruitful this approach can be.

1.1 Equilibrium physics

Statistical mechanics was originally developed to study large collections of atoms and mo-
lecules that, at least at the classical level, obey Newton’s laws of mechanics and have Hamil-
tonian dynamics. Hamiltonian systems display remarkable properties. In particular, it can
be shown from the Liouville equation that the uniform distribution on constant energy
surfaces is a stationary distribution of the dynamics: if the initial conditions are distributed
uniformly then so will be the distribution of points in phase space at later times.

It is usually believed that generic large Hamiltonian systems ergodically explore the
constant energy surface with respect to the uniform distribution on such surfaces. The
number of actual dynamical systems, such as Sinaï’s billard [191], for which ergodicity can
be proven remains extremely restricted. However, the standard mathematical results from
dynamical systems theory that object such a statement, such as the existence of �nite mea-
sure invariant tori in perturbed integrable systems (a result of the Kolmogorov–Arnold–Moser
(KAM) theorem [8, 116, 159]), are expected to be of increasingly small relevance as the num-
ber of particles in the system becomes large. This idea can be traced back to Boltzmann’s
ergodic hypothesis and gave rise to the celebrated microcanonical ensemble: if the system is
ergodic and follows Hamiltonian dynamics with HamiltonianH(q,p), with q the positions
and p the momenta, then time-averages of single-time observables (that can be measured in
real experiments performed on a single system) can be obtained from an ensemble average
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with a �at measure on the constant energy surface,

P (p,q) =
δ (H(p,q)− E)

Ω(E)
, (1.1)

withE the energy of the system and Ω(E) the phase space area accessible to the dynamics2:

Ω(E) =

∫
dpdq δ (H(p,q)− E) . (1.2)

It is a remarkable feature that in the microcanonical ensemble, the knowledge of the Hamil-
tonian or accordingly of the (conservative) forces entering Newton’s equation of motion
directly prescribes the stationary state distribution function from which expectations val-
ues of one-time observables can be computed. Equation (1.1) is the founding postulate of
equilibrium statistical physics, and, historically, of statistical physics itself. While it can be
rationalized from the above mentioned arguments it is mainly its predictive power in real
experiments that gave it its credentials.

The rest of equilibrium statistical mechanics can be derived from Eq. (1.1). Let us con-
sider a system in microcanonical equilibrium at energyE that is made of two closed subsys-
tem, say 1 and 2 with phase space coordinates (q1,p1) and (q2,p2). The total Hamiltonian
of the system then writes,

H(p1,p2,q1,q2) = H1(p1,q1) +H2(p2,q2) +H12(p1,p2,q1,q2) , (1.3)

where H1 is the Hamiltonian of system 1, H2 the Hamiltonian of system 2 and H12 the
coupling part of the total Hamiltonian. If we assume (i) that H1(p1,q1) � H2(p2,q2) so
that system 1 acts as a thermostat for system 2 and (ii) thatH12 is negligible (which requires
system 2 to be of macroscopic size and the coupling interactions to be short-ranged) then
expectations values of one-time observables depending only on system 2 variables can be
computed from the Gibbs-Boltzmann distribution:

P (p2,q2) =
e−βH2(p2,q2)

Z(β)
. (1.4)

with Z(β) a normalization constant and β = T−1 the inverse microcanonical tempera-
ture of system 1. This de�nes the canonical ensemble of equilibrium statistical mechanics
in which, once more, the subsystem Hamiltonian directly prescribes the stationary state
distribution function. Another approach can be taken to study the dynamics of a system
coupled to a large bath in equilibrium. This is nicely illustrated by a model of oscillators
[217] in which computations can be carried exactly. Consider a system with positions q and
momenta p in a potential V (q) linearly coupled to an ensemble of N harmonic oscillators.
The total Hamiltonian writes

H =
p2

2m
+ V (q) +

N∑

j=1

[
p2
j

2
+

1

2
ω2
j

(
qj −

γj
ω2
j

xj
)2
]
. (1.5)

2In order to properly take into account the quantum nature of the underlying dynamics, Ω(E) should be
renormalized by a constant independent of E to become the true density of states. We do not cover these
issues here.
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Because of the linearity of the equations of motion of the harmonic oscillators, one can
obtain closed equations for the dynamics of p and q at t > 0 that explicitly depend on the
initial positions and momenta of the oscillators at t = 0. If one assumes that these initial
conditions are sampled randomly from the corresponding Boltzmann distribution e−βH at
temperature β−1, then the dynamics of q and p follows,

q̇(t) =
p(t)

m
,

ṗ(t) = −∇V (q)−
∫ t

0

dsK(s)
p(t− s)
m

+ F(t) ,

(1.6)

with F(t) a random Gaussian force (the randomness comes from the sampling of the oscil-
lators initial conditions) with zero average,

〈F(t)〉 = 0 , (1.7)

and correlations,
〈F µ(t)F ν(t′)〉 = TK(t− t′)δµν . (1.8)

The action of the bath on the system thus writes as the sum of a deterministic drag with
�nite memory kernel and a Gaussian random force with variance proportional to that ker-
nel. In the limit where inertial e�ects are negligible, Eq. (1.6) reduces to the generalized
Langevin equation ∫ t

0

dsK(s)q̇(t− s) = −∇V (q) + F(t) . (1.9)

Furthermore, if the range of the memory kernel can be neglected with respect to the typical
timescale of the variations of q andK(s) can thus be approximated by a delta function one
then obtains the overdamped Langevin equation,

γq̇(t) = −∇V (q) +
√

2γT η(t) , (1.10)

with η(t) a Gaussian white noise with zero mean and unit variance. It is then possible to
show from the associated Fokker-Planck equation that the stationary distribution associ-
ated with Eq. (1.10) is indeed of the Boltzmann type e−βV (q). This could actually be proven
directly at the level of Eq. (1.6) but, due to the non-Markovian nature of this equation,
the computation is more intricate and mainly involves reintroducing the original model
of oscillators to unfold the memory kernel. Now, coupling a system with many harmonic
oscillators may seem an abstract game of little experimental relevance. However, Eq. (1.10)
was actually introduced for the �rst time by Paul Langevin [123] in 1908 to quantitatively
describe Brownian motion, �rst observed in the form of the erratic motion of small particles
immersed in the �uid within a pollen grain [17]. As for the model of oscillators, Langevin’s
original idea was that the force exerted by the �uid, that is the result of the many collisions
between water molecules and these particles, could be written as the sum of a standard
deterministic drag term and a �uctuating part that, by virtue of the central limit theorem,
is endowed with Gaussian statistics.

In modern statistical physics, the notion of equilibrium is not restricted to Hamiltonian
dynamics. A system is said to be in equilibrium if it obeys the so-called detailed balance
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condition that asserts that for any two states A and B in which the system can be found the
probability to observe a transition path from A to B is equal to that of observing the time-
reversed transition from B to A: the system is thus symmetric under time reversal. Because
of the reversibility of Hamilton’s equations of motion and the �atness of the microcanonical
measure, Hamiltonian systems indeed satisfy the detailed balance condition. The same can
be shown for systems whose dynamics obeys the stochastic di�erential equations Eq. (1.10)
and the more general Eq. (1.6) due to the proportionality of noise correlations with the
friction memory kernel. The notion of equilibrium extends however far beyond these two
cases.

We have just introduced basic facts about equilibrium statistical mechanics. For the
scope of this work, one of the key ones is that in equilibrium the knowledge of the dynam-
ical rules that satisfy detailed balance is enough to simply determine the stationary state
distribution function. It does not mean that the macroscopic properties of large equilib-
rium systems are easy to derive; far from it. But at least theN -body distribution function is
known and provides a convenient starting point for the study of the phase behavior. In the
following, we will however be interested in systems in which the time-reversal symmetry
is broken. In these systems, one must study the full dynamics to extract the stationary state
distribution function, a mission impossible in most cases.

1.2 Active matter

We now introduce the main framework of the present thesis: active matter. In active sys-
tems, the individual particles are able to extract and consume energy from the environment
in order to self-propel. Breaking the delicate balance between dissipation and injection of
energy at the particle level inevitably drives even the simplest versions of such interacting
particle systems away from equilibrium. As will be discussed in more detail later, their
macroscale phenomenology is very rich and stimulated the interest of physicists over the
past 30 years. A lot of experimental realizations of active matter are to be found in the living
world, see Fig. 1.1. At the meter scale, this comprises large animal groups such as starling
�ocks [9], sheep herds [80] or �sh schools [111] that can exhibit large-scale collective mo-
tion. At the micro-metric scale, common examples of active matter systems are assemblies
of self-propelling bacteria [173] that can display, under some circumstances, aggregation
behavior.

(a) (b) (c)

Figure 1.1: Examples of collective behavior in the living world. (a) A starling �ock. (b) A
sheep herd. (c) Bacterial (Myxococcus xanthus) colonies [173].
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Figure 1.2: Formation of dense clusters of carbon-coated Janus particles embedded in a near
critical mixture of water and lutidine [19].

Lots of experiments have also been performed with synthetic elements. These experi-
ments have the great advantage to be more reproducible and more controlled than those on
living systems. As such, Janus particles [207], colloids with one coated hemisphere that self-
propel due to di�usiophoresis, are commonly used today. For instance, in [19], the particles
have one carbon-coated hemisphere and are embedded in a near critical mixture of water
and lutidine. When illuminated by a laser beam of precise wavelength, the carbon-coated
hemisphere of the colloid heats up and locally induce demixing of the water-lutidine solu-
tion that, in turn, induces phoretic forces on the particles. When the light is on and at high
enough packing fraction, assemblies of such particles, while displaying no direct attraction,
separate into dense clusters separated by a dilute phase, see Fig. 1.2.

1.2.1 Active matter models

When it comes to modelling these active matter systems, lots of ingredients can be taken
into account. First, the mechanism that induces self-propulsion can be modeled (e.g. the
explicit demixing of the water-lutidine mixture at the surface of the colloid in [19]) or the
self-propulsion can be put by hand. Particles can be point-like, or spherical as in [19] or can
have a more complicated shape, for instance, a rod-like shape as E. Coli bacteria. The e�ect
of the ambient medium can be taken into account through hydrodynamic interactions [214]
between the di�erent particles or through an explicit coupling to Navier-Stokes equations
[183]. Finally, the particles in the model can interact via di�erent mechanisms: explicit
alignment in their self-propulsion [206], quorum sensing [200], steric repulsion [54] ect.
The scale at which the description starts is also of prime importance. So far we had in mind
microscopic (or agent based) models in which we keep track of the individual units making
up the system. Huge e�orts were also put in devising phenomenological models that give
a description at the mesoscopic scale by postulating hydrodynamic equations satis�ed by
e.g the density or the velocity �eld (depending on the problem at hand, more �elds can
obviously be incorporated into the description). One approach can be to write the most
general hydrodynamic equations allowed by the symmetries of the problem at hand, as
J. Toner and Y. Tu did in their 1998 theory of the �ocking transition [201]. In the work
presented all along this thesis, our starting point are microscopic models and we brie�y
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present some of the most standard ones in the following.

1.2.2 The Vicsek model

The model proposed by T. Vicsek & collaborators in 1995 [206] has participated in the re-
cent surge of enthusiasm for active matter in the physics community. It is a simple and
yet conceptually powerful model of �ocking in the vein of the theoretical physics approach
presented at the beginning of this introduction. Particles are point-like and self-propel with
a �xed speed. They align their velocity with their neighbors’ up to some noise term that
causes imperfect alignment. At large noise, the system is disordered and the mean veloc-
ity of the �ock is zero. Upon decreasing the amplitude of the noise, the system undergoes
a transition to collective motion as all the particles start to move in the same direction.
The possibility to observe a breaking of the rotational invariance as observed in the two-

(a) (b)

Figure 1.3: Transition to collective motion in the Vicsek model. Reproduced from [4]. (a)
Ordered phase in the small noise regime: all the particles move in the same direction. (b)
Disordered phase in the large noise regime: no privileged direction is selected by the dy-
namics. The shaded circle at the center of each frame indicates the size of the interaction
vicinity.

dimensional Vicsek model was the cause of a great interest in the physics community. In-
deed, thanks to the seminal work of Mermin and Wagner [151] and Hohenberg [96], it is
now understood that the breaking of a continuous symmetry is forbidden in dimension
1 and 2 in equilibrium systems with short-ranged interactions. The �ocking transition,
despite the short-range nature of the alignment interaction, is therefore a direct conse-
quence of the nonequilibrium nature of the dynamics of the Vicsek model (mainly that the
interaction network is continuously modi�ed) that allows the associated stationary state
distribution to escape the conditions under which the so-called Mermin-Wagner theorem
holds.
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1.2.3 Quorum sensing active matter

The term quorum-sensing refers to the ability of a biological entity to adapt its properties in
response to the �uctuations in the local density around it. Quorum-sensing is ubiquitous in
our everyday life (e.g. we use visual inputs to adapt our motion to the presence of obstacles)
but also at the cellular scale in which case extracellular signalling molecules are used to
carry information on the local density of biological agents. In the active matter literature,
the term Quorum Sensing Active Particles (QSAPs) refers to systems in which the particles’
self-propulsion amplitude is a function of the local density �eld. Such mechanism was for
instance proven to be at play in E. Coli populations [195]. In the standard models of QSAPs,
particles are persistent random walkers whose speed explicitly depends on a convolution
of the local density �eld. In their simplest versions, the corresponding equations of motion
for the N -particle system write

ṙi(t) = v [ρ̃(ri)]ui(t) , (1.11)

for i ∈ J1, NK where ρ̃(ri) is a convolution of the local density �eld

ρ̃(r) =

∫
dr′K(r′ − r)ρ̂(r) with ρ̂(r) =

∑

i

δ(r− ri) , (1.12)

where K is a short-ranged kernel and where ui(t) is a unit vector that gives the direction
of the self-propulsion of particle i. There exists di�erent ways to model the dynamics of the
vector ui(t) that correspond to di�erent persistent random walker models. The two main
models used in that case are the run-and-tumble dynamics [186] (where the particles are
said to be run-and-tumble particles or RTPs), which corresponds to ui(t) being uniformly
reshu�ed on the unit sphere at a given rate and the active Brownian dynamics (where the
particles are said to be active Brownian particles or ABPs) in which case ui(t) freely dif-
fuses on the unit sphere. The run-and-tumble model describes the motion of many bacteria
swimming by rotating their �agellar �laments (see [13] for an analysis of the E. Coli motion
where the tumble was however shown not to be perfectly uniform) while the ABP model
applies to the motion of self-propelled colloids such as the aforementioned Janus particles
[121].

Figure 1.4: Trajectory of a particle performing (Left) a run-and-tumble motion and (Right)
an active Brownian one. Reproduced from [24].

If v decreases fast enough with the density, the system, above a certain density thresh-
old, undergoes a phase transition and separates into a dense and a dilute phase [200], a
phenomenon called in the active matter literature the Motility Induced Phase Separation
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(MIPS) [24]. The phase diagram of 1 and 2 dimensional QSAPS, both of the ABP and RTP
types, is reproduced from [192] in Fig. 1.5. The precise functions v(ρ) and K(x) used to
construct the phase diagram are to be found in Eq. (42) and (43) of [192]. The model can
be re�ned to display a richer phenomenology [128] but is as such a remarkable minimal
model of sensing-induced aggregation behavior in real active matter systems. The mecha-
nism driving the phase separation in QSAPs is well understood: particles accumulate where
they go slower and particles go slower in denser regions, thus leading particles to accumu-
late in denser regions. Remarkably for an out-of-equilibrium many body system, and as can
be seen in Fig. 1.5, it is possible to obtain quantitative analytical predictions of the phase
diagram [192]. This notable feature is made possible by the near mean-�eld nature of the
QSAPs [192]: due to the absence of steric repulsion between the particles together with the
high densities in the MIPS region for this choice of v and K , one particle indeed interacts
at the same time with many others.

Figure 1.5: Phase diagram of QSAPs. Reproduced from [192]. The parameter v0 is the low
density limit of v and v1 its high density limit. The transition between the two takes place
at densities ρ ' ρm. Above a certain threshold for v0/v1, the system phase separates into a
dense and a dilute phase. The phase coexistence region lies between the two binodals that
give the corresponding coexistence densities. The binodals are given by the continuous red
line (theoretical prediction) and squares and circles (numerical simulations).

1.2.4 Pairwise forces interacting active particles

We now introduce a broad class of minimal models of steric-hindering-induced aggregation
behavior that we will study in this thesis. These are models of persistent random walkers
interacting via pairwise conservative forces, and possibly evolving in an external potential.
One can think about this forces as representing a hard core repulsion between the particles
even though other types of potentials will be explored throughout the present thesis. The
models we consider are de�ned by the N -body equations of motion

ṙi(t) = vi(t)−∇riΦ (r1, . . . , rN) , (1.13)
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with vi(t) the self-propulsion of particle i and where the total potential energy is the sum
of one body contributions (with external potential V ) and two-body ones (with pairwise
potential U )

Φ(r1, . . . , rN) =
N∑

i=1

V (ri) +
∑

(i,j)

U(ri − rj) . (1.14)

For simplicity, we restrict to spherically symmetric pair potentials, i.e.U(ri−rj) = U (|ri − rj|).
As pointed out before, there exist in the active matter literature di�erent ways to model the
statistics of the self-propulsion forces. In the ABPs case, vi(t) = v0ui(t) with ui(t) unitary
and freely di�using on the unit-sphere with di�usion coe�cient Dr,

u̇i(t)
Stratonovich

= −ui(t) (ui(t) · ηi(t)) + ηi(t) , (1.15)

whereηi is a zero mean Gaussian white noise with variance 〈ηµi (t)ηνi (t′)〉 = 2Drδ(t−t′)δµν .
In the RTPs one, vi(t) = v0ui(t) with ui(t) unitary and uniformly reshu�ed on the unit
sphere with rate τ−1,

u̇i(t) =
∑

k

δ(t− tk)
(
ũk − ui(t−)

)
, (1.16)

where the τk’s are Poisson distributed with rate τ−1 and the ũk’s are independent random
vectors uniformly distributed on the unit sphere. In both cases, in the steady-state dynam-
ics, the self-propulsion force is exponentially correlated in time and we have

〈
uµi (t)uνj (t

′)
〉
RTP

=
1

d
exp

(
−|t− t

′|
τ

)
δµνδij ,

〈
uµi (t)uνj (t

′)
〉
ABP

=
1

d
exp (−Dr(d− 1) |t− t′|)δµνδij ,

(1.17)

where d is the space dimension. These correlations are identical under the replacement
(d − 1)Dr ↔ τ−1. There exists a third much used model in the active matter literature in
which the self-propulsion follows an Ornstein-Ulhenbeck process [145] (in which case the
particles are called active Ornstein-Ulhenbeck particles or AOUPs),

v̇i(t) = −vi(t)
τ

+

√
2D

τ
ηi(t) , (1.18)

with ηi(t) a zero mean Gaussian white noise with unit variance. This model in which the
modulus of vi(t) itself �uctuates has been used to model collective cell dynamics [88, 34].
It has also the advantage to endow the self-propulsion force with Gaussian statistics that
makes it more suitable for analytical calculations than ABPs or RTPs. The self-propulsion
correlations in this case are also exponentially decaying with time,

〈
vµi (t)vνj (t′)

〉
=
D

τ
exp

(
−|t− t

′|
τ

)
δµν . (1.19)

In numerical simulations, the phase behavior of active particles interacting via short-ranged
repulsive pairwise forces was shown to be similar to the QSAPs one. At high enough ac-
tivity (as quanti�ed by what is called the Peclet number in the literature that measures the
ratio between the run length of a free particle to the interaction range of the pair poten-
tial) and high enough density, the system phase separates into a dense and a dilute phase
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[193]. This similarity between QSAPs and active particles interacting via pairwise short-
ranged repulsive conservative forces can heuristically be rationalized by the expectation
that collisions e�ectively reduce the self-propulsion amplitude of the particles thus fueling
the nonlinear feedback mechanism responsible for the formation of high-density regions.
The phase diagram of AOUPs with Weeks-Chandler-Andersen (WCA) interactions is re-
produced from [145] in Fig 1.6. It displays, at �xedD and large enough τ , a region of phase
separation with coexisting densities given by the blue (low density branch) and the red
(high density branch) lines. Extensive studies of the phase diagram of ABPs both in the

Figure 1.6: Phase diagram of AOUPs interacting via a WCA potential. Reproduced from
[145]. Distances are measured in units of the natural scale of the WCA potential and D =

10. The blue and red lines are the low and high density binodals, respectively.

near-equilibrium and in the high activity regimes have been conducted in [40] (dimension
2) and [162] (dimension 3). These in particular show that the equilibrium solid/liquid phase
transition survives in the small activity regime and extends at high activities where it even-
tually crosses the MIPS domain. We still however lack a �rst principle theory of the phase
diagram as is often the case with many-body systems evolving far from equilibrium.

Let us now stress what elements of realistic active matter systems these models ne-
glect. It �rst appears clear that the self-propulsion is added by hand in the dynamics and
that internal mechanisms (e.g. di�usiophoresis, rotation of a �agella ect.) causing it are
not modeled but are e�ectively encapsulated in the statistics of the self-propulsion force.
We believe this is a reasonable level of coarse-graining, especially given the similarities
between AOUPs, RTPs and ABPs on thermodynamic scales. There exist however some cir-
cumstances in which these di�erent types of particles behave qualitatively di�erently (for
instances noninteracting AOUPs in a harmonic potential have a Gaussian stationary state
probability distribution centered at the bottom of the trap while that RTPs or ABPs can dis-
play an o�-centered peak, see [33] and [199]). Furthermore, because of the rotational sym-
metry of the pair potential, the elementary constituents we describe are spherical. These
models do not aim to capture the rich phenomenology of active nematics, i.e. assemblies
of self-propelled elongated particles as are, at the subcellular scale, microtubule and mo-
tor protein mixtures. Striking deviations from the behavior of standard liquid crystals,
such as self-sustained generation of topological defects [82] and the associated large-scale
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complex �ow patterns emerging in steady state [42], have been reported both in experi-
ments and numerical simulations of hydrodynamic models of active nematics. Beside, in
[204], the authors investigated the behavior of 2 dimensional hard-rods self-propelling in
their elongated direction by taking into account, on top of the short-ranged repulsion of
Eq. (1.18), the alignment torques caused by the hard-rods collisions. They reported a grad-
ual destruction of the MIPS phase with increasing aspect ratio. While Eq. (1.18) completely
disregards alignment interactions in the self-propulsion direction, it has nevertheless been
shown that the dense phases of this model are characterized by local velocity alignment in
steady state [20]. Moreover, Eq. (1.18) is �rst order in time: it is thus assumed that viscous
drag dominates inertial e�ects. The in�uence of inertia in self-propelled particle systems
has been recently investigated [163] showing that, while �nite inertia e�ects are subtle and
non-generic, the nonequilibrium phenomenology is destroyed at large inertia. Finally, the
above de�ned models of active particles interacting through pairwise forces belong to the
broad class of dry active matter in which hydrodynamic interactions are neglected. Such
e�ects have been extensively studied in squirmer models, in which the particles move in a
low Reynolds �uid by imposing at their surface a given velocity �eld [14] that can account,
for instance, for ciliary propulsion. Hydrodynamic interactions then play an important role
in shaping the large scale behavior of theses systems that appears to depend on the chosen
type of surface �ow [216]. In the spirit of studying a minimal model of steric-hindering-
induced aggregation behavior, we will nevertheless neglect hydrodynamic interactions as
they need not be taken into account to observe the phase separation.

1.2.5 Self-propelling away from equilibrium

Systems made of interacting self-propelled particles are generically out-of-equilibrium in
the sense that their steady state dynamics is not symmetric under time-reversal. The devi-
ations from the detailed balance condition can be quantitatively measured by the entropy
production rate, which however comes with its share of subtleties [161, 57]. This generic
breaking of time-reversal symmetry in active systems can be understood by inspecting
Eq. (1.13) on one side and Eqs. (1.9) and (1.10) on the other. In the Langevin approach for
equilibrium systems evolving in contact with a thermostat, both the viscous friction and
the �uctuating force have the same physical origin - hence the proportionality between
the friction kernel and the noise correlation function in Eq. (1.8), an identity called the
Fluctuation-Dissipation relation. In active systems, the friction still emerges from the sur-
rounding viscous medium but the self-propulsion is induced by other processes, such as the
consumption of internally stored energy. As clearly seen in Eq. (1.13), the noise memory
kernel violates the �uctuation-dissipation relation and thus even some the simplest versions
of such systems evolve away from equilibrium.

Let us nevertheless investigate the similarities existing between active systems whose
dynamics obey Eq. (1.13) and equilibrium ones with dynamics given by Eq. (1.10). First, we
remark that Eq. (1.19) reduces in the τ → 0 limit to

〈vµ(t)vν(t′)〉 = 2Dδ(t− t′)δµν . (1.20)

Thus the active dynamics becomes, in the limit of zero persistence, an equilibrium Langevin
one with temperature D. Similar statements can be made in the RTP case (respectively the
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ABP case) provided v2
0τ (respectively v2

0/Dr) remains �nite as τ → 0 (respectively Dr →
∞). The small τ regime therefore allows us to probe the deviations from the equilibrium
Langevin equation and the emergence of the non-equilibrium properties of the dynamics
[60]. Let us now consider a free AOUP particle,

ṙ = v(t) , (1.21)

with v(t) obeying Eq. (1.18). The Mean Square Displacement (MSD) of the particle can be
computed and reads, after equilibration of the v(t) degrees of freedom,

〈
∆r(t)2

〉
= 2dD

(
t+ τ

(
−1 + e− t

τ

))
. (1.22)

Over short time scales t� τ , the MSD is ballistic with velocity dD/τ ,
〈
∆r(t)2

〉
' dD

τ
t2 , (1.23)

which is a signature of the persistent nature of the random process. On long time scales
t� τ , the MSD becomes di�usive with di�usion constant D

〈
∆r(t)2

〉
' 2dDt , (1.24)

exactly as one would expect for a free Brownian particle at temperature D. It actually ap-
pears that if one keeps track only of the position r, the process de�ned in Eq. (1.21) is an
equilibrium one. From these considerations, one could be tempted to endow D with the
meaning of a true thermodynamic temperature. However, as soon as one adds interaction
into the game between di�erent particles or with an external potential (and except for the
peculiar case of an AOUP in a harmonic trap [60]), the process becomes out-of-equilibrium
and the identi�cation of D with a temperature ceases to be operative.

1.3 Outline of the thesis

The goal of the present work is to gain analytical insights on the properties of systems made
of many self-propelled particles interacting via pairwise conservative forces. The outline
of the thesis follows the increasing complexity of the systems we consider. We start our
investigation in Chapter 2 by that of one active particle in an external potential. Based on
the results of a collaboration with D. Martin [143], we �rst work out the emergence of the
nonequilibrium signatures of an AOUP subjected to thermal noise. This will allow us to
quantify the non-trivial interplay between the thermal and active noises. We then review
the stationary probability distribution of a one-dimensional RTP in a soft and hard con�n-
ing potential. Lastly, we derive the stationary distribution function for a single RTP around
a �xed spherical obstacle in the ballistic limit. In Chapter 3, we introduce some useful con-
cepts in view of Chap.4. We start by de�ning various observables such as the n-point distri-
bution function, the e�ective self-propulsion or the mechanical pressure that can be used to
describe the stationary properties of large active matter systems. We then use results from
Chap. 2 to compute these observables for highly ballistic run-and-tumble particles in the
dilute limit. We �nally move to another subject and review the Mayer expansion of stan-
dard equilibrium liquid and in particular its truncation in in�nite dimension. We follow the
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steps of [67] and explain why the in�nite dimensional limit is a powerful organizing device
to derive approximate expressions for physical observables in classical �uids. In order to
prepare the forthcoming chapter, we show that the results of [67, 68] can be recovered not
only from the Mayer expansion of the free energy but also using the Born-Bogolioubov-
Green-Kirkwood-Yvon (BBGKY) hierarchy of correlation functions as a starting point. In
Chapter 4, we study self-propelled particle systems in the limit of in�nite dimension with
a particular emphasis on the role of multibody interactions that are de�ned at the begin-
ning of the chapter. In this work, we �rst characterize the low density dynamics of sticky
hard spheres within the Dynamical Mean Field Theory framework of [2]. In particular this
allows us to make predictions for the mean-square displacement to �rst order in the den-
sity. These results were obtained in collaboration with F. Zamponi and A. Manacorda [176].
Next, we derive an approximate resummation of the in�nite dimensional BBGKY hierarchy.
These results were �rst presented in [175]. However, one of the claims of that paper was
that the resummation scheme was exact in the large d limit which we know now not to
be the case. An erratum is being written out. Within this closure scheme, standard results
concerning the phenomenology of active hard spheres in �nite dimension are recovered.
As opposed to what happens in standard equilibrium �uids in in�nite dimension, this clo-
sure highlights the importance of multibody interactions in explaining the phase behavior
of active particle systems, at least at the mean-�eld level. This idea is �nally studied in
an approximate equilibrium model of active matter, namely the Uni�ed Colored Noise Ap-
proximation (UCNA) of the AOUPs dynamics, where we show analytically that the system
undergoes a phase transition that is driven by multibody interactions.
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One particle in an external potential

Contents
2.1 Emergence of thenonequilibriumsignatures of anActive-Ornstein
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As a �rst step towards understanding the collective behavior of interacting active parti-
cle systems, we study the simpler case of one particle in an external potential. For a passive
particle in an external potential V (r) subjected to a thermal noise at temperature T the
stationary distribution is the Boltzmann one,

ρ(r) ∝ e−βV (r) . (2.1)

This is no longer true in the case of self-propelled particles and this one-body phenomenol-
ogy already displays some puzzling features as the tendency to be attracted to otherwise
repulsive obstacles as was reported in many experimental [184] and theoretical [49] works.
From a purely analytical standpoint, instances in which the stationary distribution can be
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found exactly are scarce. A single RTP in an arbitrary external potential in one space di-
mension [194] is a notable exception. Remarkably, the stationary distribution of [194] is
not a local function of the potential V (r), at odds with the Boltzmann distribution Eq. (2.1).

In Sec. 2.1, we start by considering a one-dimensional AOUP in an external potential
subjected to thermal noise. We reproduce the results published in [143] in collaboration
with D. Martin in which we studied the emergence of the nonequilibrium signatures in the
small τ regime such as the deviations from the Boltzmann distribution, the steady currents
in periodic potentials and the entropy production rate. The appendices of [143] are repro-
duced in App. A. These �ndings extend the analysis published in [145] that disregarded the
presence of Brownian noise and disentangle the respective roles of the passive and active
noises on the steady state of AOUPs, showing nonequilibrium-driven surprising behav-
iors emerge as the temperature is varied. Indeed, depending on the potential in which the
particle evolves, both the current and the entropy production rate can be non-monotonic
functions of the temperature.

In Sec. 2.2, we reproduce the computation of [194] of the stationary distribution of a
single one-dimensional RTP con�ned to the right half-line by an external potential V (x).
By studying the case of an exponential potential V (x) = V0e−x/ε with ε > 0, we identify a
transition between an equilibrium-like behavior where the probability density is depleted
in the vicinity of the obstacle (when ε the range of the potential is larger than v0τ , the
run-length of an isolated particle) and a regime where the particle is e�ectively attracted
by the repulsive obstacle for ε < v0τ . The hard wall limit ε → 0+, where the stationary
distribution function develops a delta peak contribution at contact, is then studied. We
�nally adapt a method we presented in [175] to solve for the hard wall case directly from
the Fokker-Planck equation. This approach will be useful when dealing with cases in which
the distribution in an arbitrary potential is not known, as in the rest of this chapter.

In Sec. 2.3, we derive the stationary distribution of a single run-and-tumble particle
evolving around a hard spherical obstacle in the ballistic regime where v0τ � σ, with σ
the size of the obstacle. This computation clearly shows the activity induced attraction
often referred to in the active matter literature, in particular in the form of a delta peak
contribution at contact, and is at the basis of our later study of interacting self-propelled
spheres.
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Contributions

Section 2.1

• perturbative expansion at small τ of the stationary distribution of an AOUP in
an external potential in the presence of thermal noise,

• perturbative expansion at small τ of the current in an asymmetric potential
of an AOUP in the presence of thermal noise. Non-monotonous behavior as a
function of T .

• perturbative expansion at small τ of the entropy production rate of an AOUP
in an external potential in the presence of thermal noise. Non-monotonous
behavior as a function of T .

Section 2.2

• a method to compute the stationary state probability distribution directly in
the hard sphere limit.

Section 2.3

• a self-consistent equation for the density �eld of a RTP around a hard spherical
obstacle,

• density �eld in the vicinity of the obstacle exhibiting a square root plus a log-
arithmic divergence,

• stationary distribution function in the ballistic limit v0τ/σ � 1.

2.1 Emergence of the nonequilibrium signatures of an
Active-OrnsteinUhlenbeckparticle subjected to ther-
mal noise

In this section, we focus on an Active Ornstein Uhlenbeck Particle (AOUP) evolving in
one space dimension, subjected to an external potential φ(x) and further experiencing an
additional thermal noise. Its position x(t) and self-propulsion v(t) evolve according to the
following system of Langevin equations [84, 30]:

ẋ = −∂xφ+
√

2T η1 + v (2.2)

v̇ = −v
τ

+

√
2D

τ
η2 . (2.3)

In the above dynamics Eqs. (2.2)-(2.3), η1 and η2 are two uncorrelated Gaussian white noises
of unit variance, T is the amplitude of the thermal noise whileD and τ control the amplitude
and the persistence of the self-propulsion. When T = 0, Eqs. (2.2)-(2.3) correspond to
the workhorse AOUP model which has been used to model transport properties of active
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colloids [117] as well as collective cell dynamics [88, 34]. On the theoretical side, there has
been fundamental interest in its steady-state distribution, which has been characterized
both in the limit of small τ [59, 15, 144, 212, 105] and in the limit of high τ [53, 212, 105].
However, these theoretical approaches ignore the potentially physically relevant presence
of an underlying thermal noise and the steady state distribution of Eqs. (2.2)-(2.3) remains
elusive for a generic combination of T andD. Indeed, such a combination of both active and
thermal noise sources arises in multiple experiments: passive tracers embedded in living
cells [210, 58, 3] or immersed in a bath of active colloids [133], �uctuations of cellular
membrane in red blood cells [203, 12]...

In this section, we aim at �lling this gap by computing perturbatively the stationary
probability density of an AOUP experiencing an additional thermal noise in the small-
persistence-time limit. Note that for τ = 0, the self-propulsion v falls back onto a Wiener
process of amplitude D. In this particular case, the dynamics Eqs. (2.2)-(2.3) is an equi-
librium one with temperature T + D. Thus, intuitively, one could hope to �nd analytical
formulas that smoothly departs from thermal equilibrium when τ is small. We develop
here such a perturbative expansion and our main result is an analytical prediction of the
steady-state distribution Ps(x, v) as a series in τ 1/2. Building on it, we make quantita-
tive predictions about three emerging quantities: the marginal in space of the probability
density, the current in an asymmetric periodic ratchet, and the entropy production rate.
Depending on the boundary conditions and on the potential φ(x), we �nd that the inter-
play between passive and active noises leads to a rich phenomenology for the current and
the entropy production rate when the temperature is varied: decline or non-monotonicity,
divergence or decay at high T .

2.1.1 Systematic construction of the probability density function

To perform the derivation of the steady-state distribution Ps(x, v) as a series in powers
of τ 1/2, we proceed in several steps as follows. First, we conveniently rescale the Fokker-
Planck operator. Then, we look for its stationary solution by expanding Ps on the basis of
Hermite polynomials and we show how the Fokker-Planck equation imposes a recursion
relation between the coe�cients of this expansion. Finally, we solve this recursion by ex-
panding these coe�cients as power series in τ 1/2. We now detail the derivation starting
from the Fokker-Planck operator L corresponding to Eqs. (2.2)-(2.3), which reads

L · = ∂x(· ∂xφ)− v∂x ·+ ∂v

(v
τ
·
)

+
D

τ 2
∂vv ·+T∂xx· (2.4)

Because the steady-state distribution of Eq. (2.3) is proportional to exp(− τv2

2D
), we now

rescale v as ṽ =
√
τv in order to expandPs in series of τ 1/2 around the equilibrium measure.

When expressed in terms of the rescaled variable, Ps(x, ṽ) satis�es

L̃Ps(x, ṽ) = 0 , (2.5)

with the operator L̃ de�ned as :

L̃ · = ∂x(· ∂xφ)− ṽ√
τ
∂x ·+ ∂ṽ

(
ṽ

τ
·
)

+
D

τ
∂ṽṽ ·+T∂xx· (2.6)
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In the remainder of this work, the tilde notation for v and L will be omitted for notational
simplicity. We �rst note that the Fokker-Planck operator (2.6) can be written as :

L =
1

τ
L1 +

1√
τ
L2 + L3 , (2.7)

where L1, L2 and L3 are given by

L1 · = D
∂2

∂2v
·+ ∂

∂v
v · L2 · = −v

∂

∂x
· L3 · =

∂

∂x
(· ∂xφ) + T

∂2

∂2x
· (2.8)

L1 is the Fokker-Planck generator of the Ornstein-Uhlenbeck process, and its nth eigen-
function Pn is related to the nth physicists’ Hermite polynomial Hn(v) = (−1)nev

2
∂nv e

−v2 :

Pn(v) =
e−

v2

2DHn

(
v√
2D

)

√
2nn!2πD

. (2.9)

The family {Pn} are eigenfunctions of the operator L1 satisfying

L1Pn = −nPn , (2.10)

and they are further orthogonal to the family {Hn} as

δk,n =
∫ +∞
−∞

Hk

(
v√
2D

)
√

2kk!
Pn(v)dv . (2.11)

We use the Pn’s to search for the solution of the stationary distribution Ps under the form
of:

Ps(x, v) =
∑

n

Pn(v)An(x) . (2.12)

Using the orthogonality property (2.11), the An’s can be obtained as

An(x) =

∫
Ps(x, v)

Hn

(
v√
2D

)

√
2nn!

dv . (2.13)

Inserting (2.12) into (2.5) and using (2.10), we �nd that An is a solution of
∑

n

Pn(v)∂x (∂xφAn)+
∑

n

Pn(v)T∂xxAn−
∑

n

nPn(v)

τ
An−

∑

n

vPn(v)√
τ

∂xAn = 0 . (2.14)

Using the recurrence property of Hermite polynomials, Hn+1(v) = 2vHn(v)− 2nHn−1(v),
we decompose vPn into a sum of Pn+1 and Pn−1

vPn =
√

(n+ 1)DPn+1 +
√
nDPn−1 . (2.15)

We are now in position to project equation (2.14) ontoHk and use the orthogonality relation
(2.11). This leads us to the following recursion relation for the An’s

0 = −nAn−
√
τ
√

(n+ 1)D∂xAn+1−
√
τ
√
nD ∂xAn−1+τ∂x (∂xφAn)+τT∂xxAn . (2.16)
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We now look for the An’s as series in powers of τ 1/2. Because (2.6) is formally invariant
upon the reversal {ṽ,√τ} → −{ṽ,√τ}, so is the stationary distributionPs. Consequently,
A2k contains only integer powers of τ while A2k+1 contains only half-integer powers of τ .
We shall further assume that the �rst nonzero contribution to Ak is of order τ k/2. This
hierarchical ansatz is necessary to disentangle and solve, starting from A0 and order by
order in powers of τ 1/2, the recursion equation (2.16). Its validity is a posteriori con�rmed
by inserting our �nal result for Ps into (2.6) and checking that LPs vanishes order by order
in τ . We thus propose the scaling ansatz

A0 = A0
0(x) + τA2

0(x) + τ 2A4
0(x) + ... (2.17)

A1 = τ 1/2A1
1(x) + τ 3/2A3

1(x) + τ 5/2A5
1(x) + ... (2.18)

A2 = τA2
2(x) + τ 2A4

2(x) + τ 3A6
2(x) + ... (2.19)

...

Let us now show that the Aji can be computed recursively. Looking at (2.16) for n = 0, we
get

∂xA1 =

√
τ

D
[∂x (∂xφA0) + T∂xxA0] . (2.20)

Equating coe�cients of order τ k/2 on both sides of (2.20) and integrating once over the
position leads to:

Ak1 =
1√
D

[
∂xφA

k−1
0 + T∂xA

k−1
0

]
+ bk . (2.21)

with bk an integration constant. Further equating coe�cients of order τ k/2 in (2.16), we
obtain:

Akn = −
√

(n+ 1)D

n
∂xA

k−1
n+1 −

√
D

n
∂xA

k−1
n−1 +

∂x
(
∂xφA

k−2
n

)

n
+
T

n
∂xxA

k−2
n . (2.22)

Taking k = n in (2.22) and using that Ajn = 0 for j ≤ n yields the expression of Ann as a
function of A0

0:

Ann = −
√
D

n
∂xA

n−1
n−1 = (−1)n

Dn/2

√
n!
∂nxA

0
0 . (2.23)

Using expression (2.21) for k = 1 and expression (2.23) for n = 1, we obtain a closed
equation on A0

0:
∂xφ A

0
0 + (T +D)∂xA

0
0 = −b1

√
D . (2.24)

Since A0
0 corresponds to the equilibrium stationary measure when τ = 0 we must have

∫ +∞

−∞
Ps(x, v)|τ=0 dv = A0

0 = c0 e
− φ
T+D , (2.25)

with c0 �xed by normalization:

c0 =

(∫ +∞

−∞
e−

φ
T+D dx

)−1

. (2.26)
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The constant b1 is self-consistently �xed to zero such that (2.25) is a solution of (2.24). We
now set out to compute the next order correction A2

0. Applying (2.22) for n = 1 and k = 3
gives:

A3
1 = −

√
2D∂xA

2
2 −
√
D∂xA

2
0 + ∂x

(
∂xφA

1
1

)
+ T∂xxA

1
1 . (2.27)

In (2.27), we can use (2.23) to express A1
1 and A2

2 as a function of A0
0 and (2.21) to express

A3
1 as a function of A2

0. We thus obtain a di�erential equation for A2
0:

∂xφ

T +D
A2

0 + ∂xA
2
0 = −D

2∂3
xA

0
0

T +D
+
D∂x (∂xφ∂xA

0
0)

T +D
+
TD∂3

xA
0
0

T +D
− b3

√
D

T +D
. (2.28)

Using (2.25), we can integrate (2.28) and determine the expression of A2
0

A2
0 = c0e

− φ
T+D

(
D∂xxφ

T +D
− D (∂xφ)2

2(T +D)2

)
+ c2e

− φ
T+D − b3

√
D

T +D
e−

φ
T+D

∫ x

0

e
φ

T+Ddx , (2.29)

where c0 is de�ned in (2.26). Equation (2.29) involves two integration constants: c2 and b3.
While c2 is found by normalization, requiring

∫ +∞
−∞ A2

0(x)dx = 0, b3 is �xed by boundary
conditions on A2

0 as we shall see in the next sections. The recursion can be iterated up to
an arbitrary order in τ to �nd both the A2k

0 ’s and the Aki ’s for i > 0. In addition to the
previous constants c2i and b2i+1 for i < k, which were determined for lower orders, A2k

0

generically depends on two new integration constants: c2k and b2k+1. The former, c2k, is
found by requiring the normalization of A2k

0 while the latter b2k+1 is �xed by boundary
conditions for A2k

0 . For example, the di�erential equation on A4
0 is found by applying (2.22)

for (n = 2, k = 4) and (n = 1, k = 5). Its solution not only depends on c2 and b3, which
were previously determined upon computingA2

0, but also on two new integration constants
: c4 and b5. The constant c4 is found by requiring normalization

∫ +∞
−∞ A4

0 = 0 and b5 is �xed
by enforcing the correct boundary conditions for A4

0. While the explicit expressions of
the A2k

0 rapidly become cumbersome, their systematic derivation can be implemented with
a software such as Mathematica [100]. For illustration purposes, we report the complete
expression of Ps(x, v), with its integration constants, up to order τ 2 in (A.1). We remark
that (2.29) shares a common feature with the distribution of other active models [16, 212]: it
is non-local. Indeed, a perturbation of the potential δφ(x) localized around position x will
a�ect the steady-state at position x′ located far away from x. This strongly di�ers from
the Boltzmann distribution and leads to intriguing phenomena, for example in bacterial
suspensions [73].

2.1.2 Con�ning potential: explicit computation and numerics

The marginal in space of Ps(x, v) can be used to quantify how the steady-state distribution
departs from the Boltzmann weight as τ increases :

Ps(x) =

∫ +∞

−∞
Ps(x, v)dv = A0 =

∑

k

A2k
0 τ

k . (2.30)
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Here we consider the special case of a con�ning potential φ, and we require that, for all
k ≥ 1,

lim
x→±∞

A2k
0 (x) = 0 (2.31)

∫ +∞

−∞
A2k

0 (x) = 0 . (2.32)

For a simple harmonic con�nement, we note that the complete steady-state distribution
Ps(x, v) remains Gaussian and we report its expression in A.2. In the remainder of this
paper, we will focus on the more general case of anharmonic potentials. We remark that
equation (2.31) imposes b2k+1 = 0 for all k ≥ 1 while (2.32) �xes c2k for all k ≥ 1. The
function A2k

0 is then uniquely determined. For example, using (2.29) and the de�nition of
c0 (2.26), A2

0 reads

A2
0 = c0 e

− φ
T+D

(
D∂xxφ

T +D
− D (∂xφ)2

2(T +D)2

)
− 3 c2

0 D

2(T +D)
e−

φ
T+D

∫ +∞

−∞
∂xxφ e

− φ
T+D dx .(2.33)

In expression (2.33), we can readily extract the �rst correction to the Gibbs-Boltzmann
measure

Ps(x)− c0e
− φ
T+D

c0e
− φ
T+D

= τ

[
D

T +D
∂xxφ−

3D

T +D

∫ +∞
−∞ ∂xxφ e

− φ
T+D dx

∫ +∞
−∞ e−

φ
T+D dx

]
+ o(τ) . (2.34)

which reduces at T = 0 to the steady-state of an Active Ornstein-Uhlenbeck (AOUP) parti-
cle [59] to this order in τ . The expression of the full marginal in space Ps(x) up to order τ 2

is reported in (A.2). Note that our ansatz (2.17) rests on the hypothesis that Ps(x) is an an-
alytic function in τ 1/2, which need not necessarily hold for an arbitrary potential. To check
this hypothesis, we have to verify whether the series admits a �nite radius of convergence.
We do this for a potential φ(x) = x4/4, at �xed D and T and for two di�erent values of τ .
For τ = 0.01, we show in Fig.2.1 that the truncation of Eq.(2.30) to order τ 8 is well-behaved
and quantitatively agrees with the stationary distribution obtained numerically. However,
for τ = 0.2, Fig.2.1 shows the successive orders of the truncation to be typical of asymp-
totic series: adding one order in τ increases the series by a larger amount than the sum
of the previous terms, leading to wild oscillations. While such a result seems disappoint-
ing, it does not mean that the full series fails in capturing the steady state. Mathematically
speaking, it only entails that the �nite truncation yields a poor approximation of the full
series and that more work should be carried out to extract physical behaviors. To regularize
our diverging truncated sequence, we resort to a Padé-Borel summation method. We �rst
introduce the Borel transform BN associated to Eq. (2.30):

BN(τ) =
N∑

k=0

A2k
0

k!
τ k . (2.35)

The �nite-N truncation of the series Eq. (2.30) is exactly recovered from itsN th-Borel trans-
form BN by applying a Laplace inversion :

N∑

k=0

A2k
0 τ

k =

∫ ∞

0

BN(ωτ)e−ωdω . (2.36)
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The Laplace inversion of expression Eq. (2.35) for BN indeed leads back to the divergent
�nite truncation that we wanted to regularize. To avoid such a fate, one has to �nd a
nonpolynomial approximation ofBN(τ) whose Taylor expansion coincides with the known
terms in Eq. (2.35). In the Padé-Borel method, it is achieved by approximating BN with a
rational fraction FN = QN/RN , where QN and RN are polynomials in τ of order N/2
chosen such that BN(τ) = QN(τ)/RN(τ) + o(τN). The Borel resummation at order N of
Eq. (2.30), Br

N , is de�ned by replacing BN in Eq. (2.36) by its Padé approximant FN :

Br
N =

∫ ∞

0

QN(ωτ)

RN(ωτ)
e−ωdω . (2.37)

Finally, the series Eq. (2.30) is formally obtained from the limit ofBr
N whenN →∞. In this

article, we estimate Eq. (2.30) while keeping N �nite and we will not evaluate Br
N beyond

N = 8. Interestingly, for τ = 0.2, while the truncated sequence of Eq. (2.30) is divergent,
its Borel resummation Br

8 agrees quantitatively with numerical estimates of the steady-
state distribution as shown in the bottom right corner of Fig. 2.1. In Fig. 2.2, we plot the
Borel resummations Br

8 and the corresponding numerics for di�erent values of T . When
T � D, the dynamics Eqs. (2.2)-(2.3) is strongly out-of-equilibrium and the probability
density di�ers signi�cantly from the Boltzmann weight with the presence of two humps.
When T � D, self-propulsion is washed out by thermal noise, the dynamics draws closer
to equilibrium and the two humps of the distribution are smoothed out. Note that the Borel
resummation Br

8 accurately �ts the numerics without any free parameter.

2.1.3 Ratchet current: analytical formula and numerics

An interesting signature of nonequilibrium dynamics is the ratchet mechanism by which
asymmetric periodic potentials generically lead to steady-state currents. Here, we consider
such a potential φ of periodL and we use our perturbative expansion to compute the steady-
state current J , de�ned as

J = 〈ẋ〉 (2.38)

=

∫ L

0

∫ ∞

−∞

(
−∂xφ+

v√
τ

)
Ps(x, v)dxdv (2.39)

= −
∑

k≥0

τ k
∫ L

0

∂xφA
2k
0 dx+

√
D√
τ

∑

k≥0

τ k+1/2

∫ L

0

A2k+1
1 dx (2.40)

=
∑

k≥0

Tτ k
∫ L

0

∂xA
2k
0 dx+ L

√
D
∑

k>0

b2k+1τ
k . (2.41)

To go from Eq. (2.40) to Eq. (2.41), we used the expression ofA2k+1
1 in Eq. (2.21). We require

the marginal in space Ps(x) to be periodic, which entails A2k
0 to be periodic for all k ≥ 0 .

The current J then simpli�es into:

J = L
√
D
∑

k>0

b2k+1τ
k . (2.42)

While the {bk} all vanished in the previous section as a result of con�nement Eq. (2.31),
they do not for a periodic potential. Indeed, the value of bk is �xed upon requiring the
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Figure 2.1: Steady-state distribution of Eqs. (2.2)-(2.3) in a con�ning potential φ(x) = x4/4.
Top: For τ = 0.01, the �nite truncation of Eq. (2.30) converges and agrees with the nu-
merics (a). Its corresponding Borel resummation Br

N also coincides with simulation data
(b). Bottom: For τ = 0.2, the �nite truncation of Eq. (2.30) is rapidly diverging (c). How-
ever, the Borel resummation Br

8 accurately follows the data (d). Parameters : D = T = 1,
dt = 10−4, time = 108.
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Figure 2.2: Steady-state distribution of Eqs. (2.2)-(2.3) in a con�ning potential φ(x) = x4/4

for di�erent values of T . Plain curves correspond to Borel resummationsBr
8 while symbols

are obtained from numerical simulations of Eqs. (2.2)-(2.3). In dashed lines, we plot the
Gibbs-Boltzmann distributions for the two limiting cases T = 0.1 and T = 3.0 to highlight
the activity-induced deviation. The Borel resummation Br

8 always �ts the data accurately
without any free parameter. Parameters: τ = 0.2, D = 1, dt = 10−4, time = 108.

periodicity of Ak−1
0 . Thus, di�erent boundary conditions lead to di�erent distributions,

highlighting once again the nonlocal nature of the steady state. We report the expression
of the marginal in space Ps(x) for a periodic potential up to order τ 2 in Eqs. (A.3)-(A.4).
Using it, we �nd that Lb5τ

2 is the �rst non-vanishing contribution to the current:

J =
DLτ 2

2(T +D)

∫ L
0
φ(1)2φ(3)dx

∫ L
0
e

φ
T+D dx

∫ L
0
e−

φ
T+D dx

+ o(τ 2) . (2.43)

The above formula reduces to the recently computed expression of J for an AOUP par-
ticle when T = 0 [144]. It is interesting to note that, as T → ∞, J always vanishes as
J ∝ 1/T . Physically, when the thermal noise is much stronger than the self-propulsion,
the nonequilibrium part of the dynamics becomes irrelevant and J dies out. However, as
shown in the left part of Fig. 2.3, this intuitive picture is misleading at intermediate values
of T . In this regime, the interplay between passive and active noises can, depending on the
potential, make the current J non-monotonic: ramping up the temperature might drive
the particle further away from equilibrium. In the right part of Fig. 2.3, we compare our
quantitative prediction Eq. (2.43) with the results of numerical simulations for a potential
φ(x) = sin(πx/2) + α sin(πx) with α a constant. We �nd quantitative agreement at small
τ for τ < 0.01, which con�rms our conclusion in the previous section for the radius of
convergence of our ansatz Eq. (2.12). Note that J in Eq. (2.42) could also be regularized
using Borel resummation to extend the quantitative range of agreement between theory
and simulations to higher values of τ , but we leave such a regularization for future works.
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Figure 2.3: Current J induced by a ratchet potential φ(x) = sin(πx/2) + α sin(πx) for
di�erent values of T and α. Plain curves correspond to prediction Eq. (2.43) while dots
are numerical simulations with error bars given by the standard deviation. Left: J/τ 2

normalized by J0 = J(T = 0) as a function of T for di�erent values of α. Right: J/τ 2 as
a function of 1/τ for α = 1. Parameters: D = 1, dt = 15.10−4, time = 5.108.

2.1.4 Entropy production rate

Another signature of nonequilibrium processes is the existence of a non-zero entropy pro-
duction rate σ, which is de�ned as the long time limit of the logarithm of the ratio between
the probability of a trajectory and that of its time-reversed counterpart (to which we refer
as "forward" and "backward" trajectories) divided by the duration of the trajectory. It thus
measures the dynamics’ irreversibility. Somehow counter-intuitively, it has already been
shown that σ might exhibit a nonmonotonic behaviour when τ is varied [30, 56]. In this
part, in the same spirit, we would like to assess the dependency of the entropy produc-
tion rate on the temperature and explore its possible behaviors in di�erent contexts. More
generally, the computation of σ for the AOUP dynamics Eqs. (2.2)-(2.3) remains a hot topic
[31, 22, 59, 56] and it has triggered a debate about the parity of the self-propulsion v under
time-reversal [21]. Following [22], we choose here to focus instead on the non Marko-
vian process x(t) obtained after integrating out the active degrees of freedom v(t). In this
case, a trajectory over the time interval [0, tf ] is solely de�ned as a set of positions x(t) for
t ∈ [0, tf ] and its backward counterpart is given by the set of positionsRx(t) = x(tf − t).
After equilibration of the process v(t), Eqs. (2.2)-(2.3) can be rewritten in position space
only as

dx

dt
= −φ′(x) + ψ(t) , (2.44)

where ψ(t) =
√

2Tη1(t) + v(t) is a zero mean Gaussian noise with variance

〈ψ(t1)ψ(t2)〉 =
D

τ
exp

(
−|t1 − t2|

τ

)
+ 2Tδ(t1 − t2) = Γ(t1 − t2) . (2.45)
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To derive σ, we use a path-integral formalism. Since ψ is Gaussian, we obtain the steady-
state Itō probability of a trajectory over the time interval [0, tf ] as:

P [x(t)] ∝ Ps(x(0)) exp

(
−1

2

∫ tf

0

∫ tf

0

dt1 dt2 S[ẋ, x]

)
, (2.46)

with the action

S[ẋ, x] = [ẋ(t1) + φ′(x(t1))] Γ−1(t1 − t2) [ẋ(t2) + φ′(x(t2))] , (2.47)

and where Ps is the stationary state probability distribution and Γ−1(t) the functional in-
verse of the noise time correlation. It writes

Γ−1(t) =
1

2T
δ(t)− G(t)

τ
, (2.48)

with

G(t) =
D

4T 2

√
T

D + T
exp

(
−
√
D + T

T

|t|
τ

)
. (2.49)

By de�nition, the entropy production rate σ over a path x(t) is given by

σ = lim
tf→∞

1

tf

∫ tf

0

∫ tf

0

dt1 dt2
1

2

(
S
[
Ṙx,Rx

]
− S [ẋ, x]

)
. (2.50)

with Rx the reverse path. Note that in Eq. (2.50), even terms under time reversal cancels
while exact derivatives yield no contribution to σ in the limit tf →∞. Taking into account
these simpli�cations, as well as the ergodicity of the dynamics that allows us to replace
long-time averages by dynamical ensemble averages, we obtain the entropy production
rate as

σ = −2

∫ +∞

−∞
Γ−1(t) 〈ẋ(0)φ′(x(t))〉 dt , (2.51)

where the stochastic integral is now understood in the Stratonovich scheme and the average
is computed using Eq. (2.46). Note that formula Eq. (2.51) for σ is general and extends to
any additive SDE with Gaussian colored noise. Lastly, as the local part of the kernel does
not contribute to the entropy production rate, σ expresses as

σ =
2

τ

∫ +∞

−∞
G(t) 〈ẋ(0)φ′(x(t))〉 dt . (2.52)

So far, the entropy production rate Eq. (2.51) involves two-time correlation functions, and
our approach will be to reduce it to averages taken from the steady-state distribution com-
puted in Section 2.1.1. To this aim, we use the particle displacement as a small-τ expansion
parameter. Indeed, over times of order τ , for which the kernel G(t) is non-vanishing, we
have x(t) − x(0) ∼ √τ . The details of this expansion are given in A.3. In particular,
Eq. (2.52) leads to the following expansion of σ

σ =
2

τ

+∞∑

n=2

1

n!

∫ +∞

0

dtG(t)
〈
ẋ(0)φ(n+1)(x(0)) [x(−t)− x(0)]n

〉
. (2.53)
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where the discretization is of the Stratonovich type and where φ(k) is the k-th derivative of
φ. In agreement with [32], Eq. (2.53) allows us to show that additive SDEs with Gaussian
colored noise have vanishing entropy production rates when the potential is harmonic.
Moreover, as shown in A.3, the equation of motion Eq. (2.44) can be integrated recursively
in powers of τ to yield a series expansion in τ 1/2 of σ. Our main result is the �rst non-
vanishing order in τ of this expansion

σ = Dτ 2H

(
T

D

) ∫ +∞
−∞ φ(3)2 e−

φ
T+D dx

∫ +∞
−∞ e−

φ
T+D dx

+O(τ
5
2 ) , (2.54)

where the function H is given by

H(x) =
4
√

x
x+1

+ x
(

4
√

x
x+1

+ 2
)

+ 1

8
√
x(x+ 1) + 2x

(
6x+ 6

√
x(x+ 1) + 7

)
+ 2

. (2.55)

When T → 0, the entropy production rate Eq. (2.54) brings us back to the expected �ndings
of [59] for an AOUP particle. Furthermore, in a system endowed with periodic boundary
conditions at−L and +L, the entropy production rate vanishes as 1/T at large temperature
and

σ ' D2τ 2

4T

∫ +L

−L φ
(3)2dx

2L
. (2.56)

Physically, this supports the idea that thermal noise is washing out activity and nonequi-
librium signatures. However, this intuitive picture is challenged by the rich behavior of σ
with T , which strongly depends on the nature of φ and need not be a monotonic decreasing
function. For an unbounded system in a con�ning potential, the entropy production rate
might even diverge at high temperature: increasing T might thus drive the system further
away from equilibrium. In order to illustrate this idea, let us assume that φ(x) = λx2p/2p!
with p an integer great than 1. For T � D,

∫ +∞
−∞ φ(3)2 e−

φ
T+D dx

∫ +∞
−∞ e−

φ
T+D dx

∼ λ
(2p)!

(2p− 3)!

∫ +∞
−∞ x4p−6 e−λ

x2p

T dx
∫ +∞
−∞ e−λ

x2p

T dx

∝ T 2−3/p ,

(2.57)

which shows that the entropy production rate behaves at high T as

σ ∝ T 1−3/p . (2.58)

As T →∞, it thus goes to 0 for p = 2 and diverges for p > 3 as the particle explores steeper
regions of the potential. In Figure 2.4, we plot σ/τ 2 in the τ → 0 limit, as given by Eq. (2.54),
as a function of temperature in the three potentials characterized by p = 2, p = 3 and p = 4
and for D = 1 and λ = 1. Depending on the potential, it shows the rich phenomenology
displayed by σ when T is varied: monotonic decrease or non-monotonicity, divergence or
decay at high temperature...
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Figure 2.4: Entropy production rate of the process Eqs. (2.2)-(2.3) divided by the persistence
time squared in the small persistence time limit for di�erent con�ning potential φ(x) =

λx2p/2p! as a function of temperature at D = 1 and λ = 1. For p = 2, the entropy
production rate decreases as a function of T and converges to 0 at large T (a). For p = 3,
the entropy production rate decreases as a function of T and converges to a non vanishing
constant at large T (b). For p = 4, the entropy production rate is a non monotonous
function of T and diverges at large T (c).

2.1.5 Conclusion

We have developed theoretical insights for an AOUP subjected to an additional Brown-
ian noise Eqs. (2.2)-(2.3). First, we devised a recursion scheme allowing us to compute its
stationary distribution to an arbitrary order in τ 1/2. We then used this result to derive
quantitative expressions for activity-induced phenomena such as the emergence of current
and the entropy production rate. We �nd that the interplay between passive and active
noises produces a rich phenomenology for these nonequilibrium signatures when T is var-
ied: monotonic, non-monotonic, diverging or decaying behaviors. The intuitive picture of
a passive noise hindering activity is thus challenged in many cases where switching on
translational di�usion instead drives the particle further away from equilibrium. As an al-
ternative to our derivation, it is possible to obtain the marginal in space Ps(x) up to order
τ 2 by using a Markovian approximation for the evolution operator: such a method has been
developed in parallel to this work [177].

2.2 Aone-dimensional run-and-tumble particle in an ex-
ternal potential

Following [194], we study here the fully solvable case of a single run and tumble particle
on the real line in an arbitrary external potential V . The equation of motion of the particle
writes

ẋ = v0u(t)− ∂xV (2.59)

where u(t) = ±1 is a dichotomous telegraphic noise [107] with �ipping rate τ−1. Two
coupled equations for the evolution of the probability densities of being at point x with
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orientation ±1 can be obtained and read

∂tP+ = −v0∂xP+ + ∂x (P+∂xV ) +
1

τ
(P− − P+) ,

∂tP− = v0∂xP− + ∂x (P−∂xV ) +
1

τ
(P+ − P−) ,

(2.60)

withP+(x) (respectivelyP−(x)) the probability density to be at xwith u = +1 (respectively
−1). We now de�ne ρ = P+ + P− the total local density and g = P+ − P− measuring the
local orientation of the system. The system in Eq. (2.60) can then be rewritten as

∂tρ = −v0∂xg + ∂x (ρ∂xV ) ,

∂tg = −v0∂xρ+ ∂x (g∂xV )− 2τ−1g .
(2.61)

In the steady state, the absence of density current (as is the case in a con�ning potential)
allows us to obtain a closed equation for the stationary density ρ,

∂xρ
(
v2

0 − (∂xV )2)+ 2ρ
(
τ−1∂xV − ∂xV ∂2

xV
)

= 0 . (2.62)

This di�erential equation displays a singularity whenever v2
0 − (∂xV )2 = 0 whose origin

can be understood from the microscopic dynamics. Let us assume that V represents a soft
wall con�ning the particle in the x > 0 half line. From the equation of motion of the particle
in the left going state, one concludes that ẋ vanishes for ∂xv|x∗ = −v0 (which we assume
for simplicity to de�ne a unique x∗) meaning that the particle can not penetrate the wall
beyond that point. The particle density ρ is thus non-vanishing only for x > x∗ and we
obtain, imposing a density ρ∞ at x→ +∞,

ρ(x) =
ρ∞

1− (∂xV/v0)2 exp
(∫ ∞

x

2τ−1∂xV

v2
0 − (∂xV )2

)
Θ(x− x∗) . (2.63)

One of the most prominent features of the obtained probability distribution is its non local-
ity in the potential V (x). As already discussed, it also displays a cuto� at x∗ which depends
on both the potential and v0: the larger the self-propulsion amplitude the deeper the parti-
cle can penetrate the wall. We now choose V (x) = V0 exp (−x/ε) with ε > 0, the ε→ 0+

limit later allowing us to probe the hard wall regime. Equation (2.63) then becomes

ρ(x∗ + r) =
ρ∞

1− exp (−2r/ε)

{
1− exp (−r/ε)
1 + exp (−r/ε)

}ε/v0τ

, (2.64)

with x∗ = −ε ln (εv0/V0) and r ≥ 0. If ε > v0τ , i.e. if the range of the potential is larger
than the run length of the RTP, the density pro�le does not show anything spectacular and
is depleted in the vicinity of the obstacle. However, if ε < v0τ , meaning that the persistent
nature of the random walk can be probed over the typical scale of the potential, then the
density pro�le diverges at r = 0 thus displaying a strong accumulation at the wall. This is
summarized in Fig. 2.5.

2.2.1 The hard-wall limit

We now study in detail the hard wall ε → 0+ limit. For this, let us consider an observable
f(x) independent of ε. We assume that f is integrable over [0,+∞[ and of bounded absolute
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Figure 2.5: Stationary distribution function of a single one-dimensional RTP con�ned to the
x > 0 half-line by a soft repulsive exponential potential of range ε. Distances are measured
in units of ε and ρ∞ = 1. (Orange) ε = 2v0τ : the stationary distribution function vanishes
at r = 0. (Blue) ε = 0.1 v0τ : the stationary distribution function diverges at r = 0.

value. Its average over the ρ distribution is given by :

〈f〉 =

∫ ∞

x∗
ρ(x)f(x) dx ,

=

∫ ∞

0

ρ(x∗ + r)f(x∗ + r) dr ,

=

∫ ε
√
ε

0

ρ(x∗ + r)f(x∗ + r) dr +

∫ ε

ε
√
ε

ρ(x∗ + r)f(x∗ + r) dr +

∫ √ε

ε

ρ(x∗ + r)f(x∗ + r) dr

+

∫ ∞
√
ε

ρ(x∗ + r)f(x∗ + r) dr ,

(2.65)

where we have split the integral in such a way that the ε→ 0 limit can be carefully studied.
First, it is easy to remark that, ∀x ≥ √ε , ρ(x∗ + r)→ ρ∞ as ε→ 0. Therefore,

∫ ∞
√
ε

ρ(x∗ + r)f(x∗ + r) dr → ρ∞

∫ ∞

0

f(x) dx . (2.66)

Moreover,

ρ(x∗ + ε) =
ρ∞

1− exp (−2)

{
1− exp (−1)

1 + exp (−1)

}ε/v0τ

. (2.67)

which is �nite. Hence the third integral yields a vanishing contribution in the ε→ 0+ limit,
∫ √ε

ε

ρ(x∗ + r)f(x∗ + r) dr → 0 . (2.68)
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Furthermore, we have :
∫ ε

ε
√
ε

ρ(x∗ + r)f(x∗ + r) dr ≤ ερ(x∗ + ε
√
ε)f(x∗ + ε

√
ε) ,

= ε
ρ∞

1− exp (−2
√
ε)

{
1− exp (−√ε)
1 + exp (−√ε)

}ε/v0τ

f(x∗ + ε
√
ε) ,

−−−→
ε→0+

0 .

(2.69)

Thus the second integral also vanishes in the hard sphere limit. The contribution from the
vicinity of the obstacle thus only comes from the �rst one that evaluates to,

∫ ε
√
ε

0

ρ(x∗ + r)f(x∗ + r) dr = ε

∫ √ε

0

ρ(x∗ + εr)f(x∗ + εr) dr

' ερ∞f(0)

∫ √ε

0

rε/v0τ

2r

−−−→
ε→0+

v0τ

2
ρ∞f(0) .

(2.70)

Note that we could perform exactly the same computation for this last integral with εq, for
any q > 1, as an upper bound. From this, we can �rst conclude that :

ρ(x) −−−→
ε→0+

v0τ

2
ρ∞δ(x) + ρ∞Θ(x) , (2.71)

in agreement with [137] where the hard wall limit is rather obtained by studying a RTP
with zero-current boundary condition in the presence of thermal noise and later setting
the temperature to 0. The stationary distribution function therefore displays a delta peak
accumulation at the wall and a �at bulk part. Note that all the weight of the δ function is
at x = 0+, i.e. the convention is such that

∫ 1

0

dx δ(x) = 1 . (2.72)

Moreover, for �nite ε, the solution displays an accumulation boundary layer close to the
wall with thickness smaller than any polynomial in ε. Within the accumulation boundary
layer we therefore always have (∂xv)2 = v2

0 , an identity that allows to regularize products
of the type ρ(x)∂xV that often arise when computing, for instance, the mechanical pressure
exerted on the wall.

2.2.2 The hard-wall limit again

Here, we present a way of directly obtaining Eq. (2.71) without having to solve �rst for an
arbitrary external potential. This is adapted from the method we presented in [175] and
will be useful later when studying more complex geometries where general solutions of
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the type Eq. (2.63) are not available. We start from Eq. (2.60) that we rewrite in stationary
state as

0 = −v0σ∂xPσ + ∂x (Pσ∂xV ) +
1

τ
(P−σ − Pσ) , (2.73)

with σ = ±1. Furthermore, we know that the probability current vanishes at x = x∗, i.e.
limx→x∗ (v0σ − ∂xV )Pσ(x) = 0. Thus, by integrating Eq. (2.73) between x∗ and x∗ + δx
we get

−v0σPσ (x∗ + δx)+Pσ (x∗ + δx) ∂xV (x∗ + δx)+
1

τ

∫ x∗+δx

x∗
dx′ (P−σ (x′)− Pσ (x′)) = 0 .

(2.74)
We then take the hard wall limit ε→ 0+ and afterwards the limit δx→ 0. This procedure
kills the potential term and we obtain

lim
δx→0+

lim
ε→0+

[
−v0σPσ (x∗ + δx) +

1

τ

∫ x∗+δx

x∗
dx′ (P−σ (x′)− Pσ (x′))

]
= 0 . (2.75)

This equation shows us that, in the hard wall limit, the probability density can indeed be
decomposed as the sum of a bulk part at x > 0 and a delta peak contribution at x = 0,

lim
ε→0+

Pσ(x) = Γσδ(x) + fσ(x)Θ(x) , (2.76)

with, from Eq. (2.75),
− v0σfσ

(
0+
)

+
1

τ
(Γ−σ − Γσ) = 0 , (2.77)

which takes the form of a �ux-balance equation at the surface of the wall. Furthermore, the
bulk equation can be derived straightforwardly from the original Fokker-Planck one,

− v0σ∂xfσ +
1

τ
(f−σ − fσ) = 0 , (2.78)

from which we recover the �atness of the bulk distribution fσ(x) = ρ∞/2. The surface
�ux-balance equations then reduces to

(Γ− − Γ+) =
v0τ

2
ρ∞ . (2.79)

It appears natural to close the system by setting Γ+ = 0 as right going particles do not
accumulate at the left con�ning wall. This �nally yields

Γ− =
v0τ

2
ρ∞ , (2.80)

from which one recovers Eq. (2.71). The vanishing of Γ+ can actually be proven by inte-
grating Eq. (2.74) over δx ∈ [0, δx′] and taking �rst the ε → 0+ limit and afterwards the
δx′ → 0+ one. This yields,

lim
δx→0+

lim
ε→0+

∫ δx′

0

dsPσ (x∗ + s) ∂xV (x∗ + s) = v0σ Γσ . (2.81)

The non negativity of the probability together with the negativity of ∂xV �nally imposes
Γ+ = 0. This construction overall shows that the precise form of the potential used to build
the hard wall limit is irrelevant. To sum things up, we obtain in the end




P−(x) =

ρ∞
2

Θ(x) +
v0τ

2
ρ∞δ(x) ,

P+(x) =
ρ∞
2

Θ(x) .
(2.82)
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b

u
θ

r

Figure 2.6: A collision of an active hard-sphere (black, rightmost) with diameter σ and
impact parameter b = r sin θ < σ (with cos θ < 0) onto a pinned (black, leftmost) one. In
the following we introduce the notation w = cos θ. The incoming particle with direction
u hits the target sphere (at the magenta position) and then skids around by occupying the
sequence of green positions. It eventually takes o� at the blue position when its orientation
u becomes tangent to the target sphere. In the highly ballistic limit, no tumble can occur
over the typical skidding distances.

2.3 A run-and-tumble particle around a hard spherical
obstacle

We now address the case of an RTP in contact with a hard spherical obstacle in arbitrary
space dimension d > 1 in the highly ballistic limit v0τ � σ with σ the size of the obsta-
cle. Incidentally, the highly ballistic limit turns out to be relevant for studying collective
phenomena such as the motility-induced phase separation, as can be seen from the phase
diagrams of [196] in which the MIPS critical point in a WCA system arises when the run
length equals a few tens of the potential range both in d = 2 and d = 3. This regime has
also been studied for its connections with sheared granular systems [1, 155]. Our main re-
sults are as follows. For all σ/v0τ , the stationary distribution function is shown to exhibit
a delta peak accumulation at contact and a bulk contribution that diverges at r = σ. The
structure of this divergence is elucidated. The distribution is then fully characterized in
d ≥ 2 as σ/v0τ → 0.

The equation of motion of a RTP evolving in a spherically symmetric potential reads

dr
dt

= v0u(t)−∇V (r) , (2.83)

whereu(t) is the standard RTP propulsion vector: it is normalized and uniformly reoriented
on the unit sphere with rate τ−1. The physical picture for the interaction between the
particle and the obstacle is depicted in Fig. 2.6. The stationary state distribution function
P (r,u) solves the master equation,

− v0u ·∇rP + ∇r (P∇rV (r)) +
1

τ

(∫
du′

Ωd

P (r,u′)− P
)

= 0 . (2.84)

36



One particle in an external potential

Using rotational symmetry, and denoting r = ||r|| and w = r · u/r, the above equation is
written as

0 =− v0

(
w∂rP +

1− w2

r
∂wP

)
+

1

rd−1
∂r
(
rd−1P∂rV (r)

)

+
1

τ

(∫ 1

−1

dw′

2Wd−2

(
1− w′2

) d−3
2 P (r, w′)− P (r, w)

)
,

(2.85)

withWn thenth Wallis integral. We assume thatV (r) corresponds to a hard sphere potential
of exclusion diameter σ. In other words, as in Sec. 2.2, we choose

V (r) = V0 e−
r−σ
εσ , (2.86)

and we take the hard sphere limit ε→ 0+ by following the program explained in Sec. 2.2.2.
First, from the equation of motion Eq. (2.83), we know that ∀ε > 0, P (r, w) = 0 for r ≤ r∗

with r∗ de�ned by V ′(r∗) = −v0. Upon multiplying Eq. (2.85) by rd−1 and integrating it
between r∗ and r > r∗ we obtain

0 = −v0wr
d−1P (r, w) + v0(d− 1)w

∫ r

r∗
dr′r′d−2P (r′, w)

− v0(1− w2)∂w

∫ r

r∗
dr′r′d−2P (r′, w) + rd−1P (r, w)V ′(r)

+
1

τ

∫ r

r∗
dr′r′d−1

(∫ 1

−1

dw′

2Wd−2

(
1− w′2

) d−3
2 P (r, w′)− P (r, w)

)
,

(2.87)

At �xed r, we take the limit ε → 0+. We then take the r → σ limit. This shows that the
probability distribution function develops in the hard sphere limit a singular part at contact
in the form of a delta peak at r = σ. Denoting z = r/σ, the stationary distribution function
takes the form

P (r,u) = f(z, w)Θ(z − 1) + Γ(w)δ(z − 1) , (2.88)

where f(z, w) and Γ(w) are solutions of the two coupled partial integro-di�erential equa-
tions

w∂zf +
1− w2

z
∂wf + ηf = ηρ(z) , (2.89)

and

Γ′(w)− w

1− w2
(d− 1)Γ(w) +

η

1− w2
Γ(w) = − w

1− w2
f(1, w) +

η

1− w2
Γ̂ , (2.90)

with η = 1/Pe = σ/v0τ and

ρ(z) =

∫ 1

−1

dw

2Wd−2

(1− w2)
d−3

2 f(z, w) , (2.91)

the bulk density and

Γ̂ =

∫ 1

−1

dw

2Wd−2

(1− w2)
d−3

2 Γ(w) , (2.92)
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the surface density. Equations (2.89) and (2.90) can be understood as two coupled �ux bal-
ance equations : one for the bulk and one for the surface of the obstacle. We also regularize
the product P (r, w)V ′(r) in the hard sphere limit. We integrate once more Eq. (2.87) over
r ∈ [r∗, r′], take the ε → 0+ limit at �xed r′ and later the r′ → σ limit. In Eq. (2.87), only
the �rst and the fourth term yield non vanishing contributions, thus showing that

lim
r′→σ

lim
ε→0+

∫ r′

r∗
drP (r, w)V ′(r) = v0w lim

r→σ
lim
ε→0+

∫ r′

r∗
drP (r, w)

= v0σwΓ(w)

(2.93)

proving that Γ(w > 0) = 0: particles leaving the obstacle do not accumulate on it. This in
particular yields the following boundary condition for the bulk equation

f(1, w > 0) =
ηΓ̂

w
. (2.94)

2.3.1 A self-consistent equation over the density �eld

At �xed ρ(z), the bulk equation Eq. (2.89) is a �rst order linear partial di�erential equation
that can be solved by the method of characteristics. The function ρ(z) is then determined
self-consistently. The goal of this section is to obtain this self-consistent equation satis�ed
by the density �eld. The characteristics of the bulk equation are given by





z′(s) = w(s)

w′(s) =
1− w2(s)

z(s)

(2.95)

and are thus lines such that z
√

1− w2 = b = cste with b the impact parameter. They
correspond to free streaming trajectories and are depicted in Fig. 2.7. Equation (2.89) is
furthermore supplemented with the boundary condition f(L,w < 0) = 1 that implements
an homogeneous reservoir of incoming particles. L is sent to in�nity in the end. AsL→∞,
the actual form of the boundary condition at z = L is irrelevant.

Domain 1 : w > 0 and z
√

1− w2 < 1

By de�nition, along a characteristic, the bulk equation writes

f ′(s) + ηf(s) = ηK(s) with K(s) = ρ(z(s)) , (2.96)

and hence can be integrated as

f(s, b) = f(s = 0, b)e−ηs + ηe−ηs
∫ s

0

ds′K(s′)eηs′ . (2.97)

A boundary condition must then be implemented to express f(s = 0, b) and the (s, b) vari-
ables that parametrize the characteristic must be replaced by their (z, w) counterparts. We
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Figure 2.7: Characteristics of the bulk equation in Eq. (2.89). (Blue and Orange) Charac-
teristics that are connected to the boundary condition at z = L (dashed blue line). (Green)
Characteristics that are connected to the boundary condition at z = 1 Eq. (2.94). (Red)
Characteristic that originates from (z = 1, w = 0). After each collision, the particle leaves
the obstacle exactly along this line (except when it has �ipped in course of skidding).

�rst solve the equation on the domain w > 0 and z
√

1− w2 < 1. This domain is generated
by characteristics corresponding to trajectories leaving the obstacle after a collision. These
are depicted in green in Fig. 2.7. On each characteristic we have

z
√

1− w2 = b < 1 ,

⇒ w(s) =

√
1− b2

z(s)2
.

(2.98)

Thus

z′(s) =

√
1− b2

z(s)2
,

⇒ z(s)

√
1− b2

z(s)2
= s+

√
1− b2 ,

(2.99)

as we choose to parametrize the characteristics such that z(s = 0) = 1. This leads to




z(s, b) =

√
s2 + 2s

√
1− b2 + 1 ,

w(s, b) =
s+
√

1− b2

s2 + 2s
√

1− b2 + 1
,

(2.100)

which can be inverted so as to get
{
b = z

√
1− w2 ,

s = zw −
√

1− z2(1− w2) .
(2.101)
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Lastly, from Eq. (2.94) and Eq. (2.100), the boundary condition writes

f(s = 0, b) =
ηΓ̂√

1− b2
. (2.102)

This �nally leads to

f(z, w) =
ηΓ̂√

1− z2(1− w2)
e−η(zw−

√
1−z2(1−w2))

+ ηe−ηzw
∫ z

1

dz′ρ(z′)
z′√

z′2 − z2(1− w2)
eη
√
z′2−z2(1−w2) .

(2.103)

Domain 2 : w < 0

This domain is generated by characteristics that are connected to the boundary condition
at z = L. These are depicted in blue and orange in Fig. 2.7. Following the same route as
above, we obtain along a characteristic





z(s, b) =

√√√√b2 +

(
s− L

√
1− b2

L2

)2

,

w(s, b) =
−L
√

1− b2

L2 + s
√
b2 + (s− L

√
1− b2

L2 )2

,

(2.104)

with z(s = 0, b) = L. These equations can be inverted to yield




b = z
√

1− w2 ,

s = zw + L

√
1− z2(1− w2)

L2
.

(2.105)

Hence,

f(z, w) = ηe−ηzw
∫ L

z

dz′ρ(z′) exp

{
−ηz′

√
1− z2(1− w2)

z′2

}
1√

1− z2(1−w2)
z′2

+ e
−η
(
zw+L

√
1− z2(1−w2)

L2

)
,

=
L→∞

ηe−ηzw
∫ +∞

z

dz′ρ(z′) exp
{
−η
√
z′2 − z2(1− w2)

} z′√
z′2 − z2(1− w2)

.

(2.106)

The above equation shows, as expected, the irrelevance of the boundary condition at z = L
as L is sent to in�nity.
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Domain 3 : w > 0 and z
√

1− w2 > 1

This domain is generated by the extension of the orange characteristics of Fig. 2.7 studied
in the previous paragraph to the w > 0 domain. In this domain we use the continuity
requirement at w = 0 inferred from Eq. (2.106) as an initial condition at s = 0. The
characteristics are parametrized by




w(s, b) =

s√
b2 + s2

,

z(s, b) =
√
b2 + s2 ,

(2.107)

as w(s = 0, b) = 0. These equations can be inverted to yield
{
b = z

√
1− w2 ,

s = zw .
(2.108)

Furthermore, we have by continuity,

f(s = 0, b) = η

∫ +∞

b

dz′ρ(z′) exp

{
−ηz′

√
1− b2

z′2

}
1√

1− b2

z′2

, (2.109)

and hence

f(z, w) = ηe−ηzw
∫ +∞

z
√

1−w2

dz′ρ(z′) exp
{
−η
√
z′2 − z2(1− w2)

} z′√
z′2 − z2(1− w2)

+ ηe−ηzw
∫ z

z
√

1−w2

dz′ρ(z′) exp
{
η
√
z′2 − z2(1− w2)

} z′√
z′2 − z2(1− w2)

.

(2.110)

Domain 4 : w > 0 and z
√

1− w2 = 1

The line de�ned by z
√

1− w2 = 1 with w > 0 which is depicted in red in Fig. 2.7 plays a
special role. Indeed, after each collision, the particle leaves the obstacle exactly along this
line (except when it has �ipped in course of skidding). This strongly suggests that the bulk
distribution function f(z, w) displays a delta peak contribution along this characteristic
line. To check this, let us write the ansatz,

f(z, w) = f0(z, w) + φ(z)δ(z
√

1− w2 − 1)Θ(w) , (2.111)

with f0(z, w) a piece-wise continuous function (as f0 might not be continuous when cross-
ing the characteristic line z

√
1− w2 = 1 at w > 0). By inserting the above expression in

Eq. (2.89), we get for z > 1

[√
1− 1

z2
φ′(z) + ηφ(z)

]
δ(z
√

1− w2 − 1) + w∂zf0 +
1− w2

z
∂wf0 + η(f0 − ρ) = 0 ,

(2.112)
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which in particular yields
φ(z) = φ(1)e−η

√
z2−1 . (2.113)

The value of φ(1) is given by Eq. (2.90). By integrating it between w = 0− and w = 0+, we
indeed obtain

Γ(0−) = lim
ε→0

∫ +ε

−ε
dw wf(1, w) . (2.114)

Hence
f(1, w) =

Γ(0−)

w
δ(w) + ... = Γ(0−)δ(

√
1− w2 − 1) + ... , (2.115)

where the ... stands for something more regular than δ(w)/w. We therefore get

φ(z) = Γ(0−)e−η
√
z2−1 . (2.116)

The existence of a Dirac delta singularity in the distribution function, not only at the surface
of the obstacle but also in the bulk of the (w, z) plane, is a remarkable feature of this problem
that, up to our knowledge, has not so far been pointed out in the literature. We believe this
e�ect, that would be smoothed by a soft-potential, is a generic feature of active particles
around strictly convex rigid obstacles.

A self-consistent equation for the bulk density ρ(z)

The self-consistent equation for the bulk density ρ(z) is obtained by integrating Eqs. (2.103)-
(2.106)-(2.110)-(2.116) over w. It takes the form of an integral equation

ρ(z) = ρ0(z) + L[ρ](z) , (2.117)

where

ρ0(z) = ηΓ̂

∫ 1

√
z2−1
z

dw

2Wd−2

(1− w2)
d−3

2

exp
{
−η
(
zw −

√
1− z2(1− w2)

)}

√
1− z2(1− w2)

+
Γ(0−)

2Wd−2

e−η
√
z2−1

√
z2 − 1

z2−d ,

(2.118)

and where the operator L is de�ned as

L[ρ](z) = L1[ρ](z) + L2[ρ](z) + L3[ρ](z) , (2.119)

with

L1[ρ](z) = η

∫ z

1

dz′z′ρ(z′)

∫ 1

√
z2−1
z

dw

2Wd−2

(1− w2)
d−3

2

e−ηzw exp
(
η
√
z′2 − z2(1− w2)

)

√
z′2 − z2(1− w2)

,

(2.120)
and

L2[ρ](z) = 2η

∫ z

1

dz′z′ρ (z′)

∫ √
z2−1
z

√
z2−z′2
z

dw

2Wd−2

(
1− w2

) d−3
2

e−ηzw cosh
(
η
√
z′2 − z2(1− w2)

)

√
z′2 − z2(1− w2)

,

(2.121)
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and �nally

L3[ρ](z) = η

∫ +∞

z

dz′z′ρ (z′)

∫ √
z2−1
z

−1

dw

2Wd−2

(
1− w2

) d−3
2

e−ηzw exp
(
−η
√
z′2 − z2(1− w2)

)

√
z′2 − z2(1− w2)

.

(2.122)
To our knowledge, Eq. (2.117) can in general only be solved formally,

ρ(z) =
+∞∑

n=0

Ln[ρ0](z) . (2.123)

Progresses can nevertheless be made in some limiting cases. The �rst one we study is the
near obstacle regime z−1� 1. We then focus on the highly ballistic limit η → 0 where the
size of the obstacle is much smaller than the persistence length of the self-propelled particle.
At the other side of the spectrum, the �rst η−1 correction to the η → ∞ equilibrium limit
is equivalent to the case of one particle against a hard wall that has been studied in a two-
dimensional geometry in [49].

2.3.2 Behavior of the density �eld in the vicinity of the obstacle

We start by studying the behavior of the density �eld in the vicinity of the obstacle. We
denote h = z − 1 and assume that h << 1. We �rst have,

ρ0(1 + h) =
Γ(0−)

2Wd−2

1√
2h
− ηΓ̂

4Wd−2

lnh+O(1) . (2.124)

Indeed, the last term of Eq. (2.118) writes in the small h limit,

ηΓ̂

∫ 1

√
z2−1
z

dw

2Wd−2

(1− w2)
d−3

2

exp
{
−η
(
zw −

√
1− z2(1− w2)

)}

√
1− z2(1− w2)

= ηΓ̂

∫ 1/z2

0

ds

4Wd−2

(
1

z2
− s
) d−3

2 exp
(
−η
√
z2 − 1 + z2s+ ηz

√
s
)

√
s
√
z2 − 1 + z2s

,

=
ηΓ̂

4Wd−2

(∫ 1

0

ds
(1− s) d−3

2

√
s
√
s+ 2h

[1 +O(h)]

−
∫ 1

1/z2

ds

(
1

z2
− s
) d−3

2 exp
(
−η
√
z2 − 1 + z2s+ ηz

√
s
)

√
s
√
z2 − 1 + z2s

)
,

= − ηΓ̂

4Wd−2

lnh+O(1) .

(2.125)

Our claim is that Eq. (2.124) gives the leading order behavior of the actual density �eld, i.e.

ρ(1 + h) =
Γ(0−)

2Wd−2

1√
2h
− ηΓ̂

4Wd−2

lnh+O(1) . (2.126)
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To prove the validity of the above equation, we now investigate the small h behavior of
L[ρ̃](1 + h) for a generic function ρ̃(z) integrable at z = 1. We start by noting that upon a
change of variables

L1[ρ̃](z) =
ηz4−d

4Wd−2

∫ z

1

dz′ z′ρ̃(z′)g1(z′, z) , (2.127)

with

g1(z′, z) =

∫ 1
z2

0

ds
(1− z2s)

d−3
2

√
z2 − 1 + z2s

exp
(
−η
√
z2 − 1 + z2s+ η

√
z′2 − 1 + z2s

)
√
z′2 − 1 + z2s

. (2.128)

Thus, in the vicinity of the obstacle,

L1[ρ̃](1 + h) =
η(1 + h)h

4Wd−2

∫ 1

0

du (1 + uh) ρ̃ (1 + uh) g1 (1 + uh, 1 + h) , (2.129)

with

g1 (1 + uh, 1 + h) '
∫ 1

0

ds
1

√
s
√
s+ 2h(1 + u)

,

' − lnh .

(2.130)

Therefore,

L1[ρ̃](1 + h) ' − η

4Wd−2

h lnh

∫ 1

0

du ρ̃ (1 + uh) . (2.131)

We proceed accordingly for L2. We have,

L2[ρ̃](z) = 2η

∫ z

1

dz′z′ρ̃ (z′) g2 (z′, z) , (2.132)

with

g2(z′, z) =

∫ √
z2−1
z

√
z2−z′2
z

dw

2Wd−2

(
1− w2

) d−3
2

exp (−ηzw)√
z′2 − z2(1− w2)

cosh
(
η
√
z′2 − z2(1− w2)

)
.

(2.133)
Thus,

L2[ρ̃](1 + h) = 2ηh

∫ 1

0

du (1 + uh) ρ̃ (1 + uh) g2 (1 + uh, 1 + h) , (2.134)

with

g2 (1 + uh, 1 + h) '
∫ √2h

√
2h(1−u)

dw

2Wd−2

1√
2h(u− 1) + w2

,

' arctanh
(√

u
)
.

(2.135)

Hence we obtain,

L2[ρ̃](1 + h) ' 2ηh

∫ 1

0

du ρ̃ (1 + uh) arctanh
(√

u
)
. (2.136)
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Lastly, we study the conditions under which L3[ρ̃](1) is �nite. The latter indeed yields a
�nite result if

ρ̃ (z′)

∫ 0

−1

dw

2Wd−2

(
1− w2

) d−3
2

exp
(
ηw − η

√
z′2 − 1 + w2)

)

√
z′2 − 1 + w2

, (2.137)

is integrable at z′ = 1. By denoting u =
√
z′2 − 1� 1 we obtain,

∫ 0

−1

dw

2Wd−2

(
1− w2

) d−3
2

exp
(
ηw − η

√
z′2 − 1 + w2)

)

√
z′2 − 1 + w2

' −1

4Wd−2

lnu , (2.138)

thus showing that L3[ρ̃](1) is �nite if

ρ̃ (1 + h) ln(h) (2.139)

is integrable at h = 0. It thus appears from Eqs. (2.131)-(2.136)-(2.139) that L[ρ0](z) has a
�nite limit at z = 1. Recursively, the same can be said for Ln[ρ0](z) for any n > 0. Let
us assume that ε is the typical amplitude of the operator L (which can be formally put by
hand by setting L → εL and letting ε→ 1). Then to any �nite order in ε we have,

ρ(1 + h) =
h→0

Γ(0−)

2Wd−2

1√
2h
− ηΓ̂

4Wd−2

lnh+O(1) . (2.140)

We assume that the latter holds after resummation, which then implies Eq. (2.126). This
equation relates exactly the divergences of the bulk distribution function on the obstacle to
properties of the surface distribution function. We have simulated the dynamics Eq. (2.83) in
dimension d = 2 and numerically measured Γ(w) and ρ(z). The simulation is performed in
a spherical box of radiusL = 100v0τ . The boundary condition is such that when the particle
hits the outer boundary it is re�ected with a random (inward) orientation. In Fig. 2.8, we
plot the function Γ(w) at η = 1 and deduce Γ(0−) from it. We then show that the measured
ρ(z) indeed exhibits the square root divergence predicted by Eq.(2.140).

2.3.3 Behavior of the density �eld in the highly ballistic limit

We now study the solution of Eq. (2.117) in the highly ballistic limit η → 0. We �rst de�ne
K(z) = ρ(z)− 1 such that limz→∞K(z) = 0. From Eq. (2.117), one obtains

K(z) = K0(z) + L[K](z) , (2.141)

with

K0(z) = ρ0(z)−
∫ 1

√
z2−1
z

dw

2Wd−2

(
1− w2

) d−3
2 exp

(
−ηzw + η

√
1− z2(1− w2)

)
. (2.142)

Our claim is then the following. In any dimension d ≥ 2, K0(z) gives the leading order
behavior of K(z),

K(z) =
η→0

Γ(0−)

2Wd−2

z2−d
√
z2 − 1

−
∫ 1

√
z2−1
z

dw

2Wd−2

(
1− w2

) d−3
2 + o(1) . (2.143)
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w

Γ
(w

)

z2−1

ρ
(z

)

Figure 2.8: Steady-state distribution of Eq. (2.83) for the hard sphere case at η = 1 in dimen-
sion d = 2. (Left) Numerically measured surface distribution Γ(w). It is non-vanishing for
w < 0 only and yields Γ(0−) ' 0.57. (Right) Log-log plot of the bulk space density ρ(z)

as a function of z2− 1 in the vicinity of the obstacle. The dashed blue line is the theoretical
prediction of Eq. (2.140) with 2W0 = π and using the measured value of Γ(0−). The orange
dots correspond to numerical simulations. Parameters: v = 1, τ = 1, σ = 1, L = 100

T = 1010 with T the total physical time.

Interestingly, this leading order behavior can be obtained quite simply from the η → 0
limit of Eq. (2.89) supplemented with the boundary condition f(L,w < 0) = 1 at some
�xed L and afterwards sending L → ∞, i.e. by extending all along each characteristic
its prescribed value at the corresponding boundary condition. In other words, the η → 0
and L → ∞ limits commute. The result in Eq. (2.143) can be understood from a visual
inspection of Eq. (2.119) from which L can be expected to scale as O(η). As we prove next,
this scaling is correct in all dimension d ≥ 3. Equation Eq. (2.143) also holds in d = 2.
However, the small η result reads

K(z) =
Γ(0−)

π

1√
z2 − 1

−
(

1

2
− 1

π
arcsin

(√
z2 − 1

z

))
+O(η ln η) , (2.144)

showing that the η expansion is not regular. We interpret this as being related to the recur-
rence of two-dimensional random walks.

Leading order corrections at z �xed

We show that both L1 and L2 yield O(η) corrections in the η → 0 limit for all z �xed. We
�rst notice that

lim
η→0

1

η
L1[K](z) =

∫ z

1

dz′ z′Kη=0 (z′)

∫ 1

z2−1
z

dw

2Wd−2

(1− w2)
d−3

2

√
z′2 − z2 (1− w2)

. (2.145)

The above integral is indeed well-de�ned as
∫ 1

z2−1
z

dw

2Wd−2

(1− w2)
d−3

2

√
z′2 − z2 (1− w2)

, (2.146)
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has �nite value at z′ = 1 and ρη=0 (z′) is integrable at z′ = 1 as can be seen from Eq. (2.126).
Accordingly, the same scaling holds for L2,

lim
η→0

1

η
L2[K](z) = 2

∫ z

1

dz′z′Kη=0 (z′)

∫ √
z2−1
z

√
z2−z′2
z

dw

2Wd−2

(1− w2)
d−3

2

√
z′2 − z2(1− w2)

. (2.147)

As a preliminary result, we thus obtain ∀z �xed,

K(z) = K0(z) + L3[K](z) + η lim
η→0

1

η
L1[K](z) + η lim

η→0

1

η
L2[K](z) + o(η) . (2.148)

We now turn to the study of L3[ρ](z). We recall Eq. (2.122),

L3[K](z) = η

∫ +∞

z

dz′z′K (z′)

∫ √
z2−1
z

−1

dw

2Wd−2

(
1− w2

) d−3
2 ×

· · · ×
exp

(
−ηzw − η

√
z′2 − z2(1− w2)

)

√
z′2 − z2(1− w2)

.

(2.149)

from which it appears that if Kη=0 (z′) is integrable at +∞, then

lim
η→0

1

η
L3[K](z) exists. (2.150)

Result in d ≥ 3: In the limits where η → 0, z →∞ with ηz → 0, one has

K0(z) ' Γ(0−)

2Wd−2

1

zd−1
, (2.151)

which is integrable in d ≥ 3 at z′ →∞. Therefore,

L3[K0](z) = O(η) . (2.152)

Equation (2.143) is therefore a solution of the self-consistent equation Eq. (2.141). The small
η corrections are obtained as

K(z) = K0(z) + η lim
η→0

1

η
L[K0](z) + o(η) . (2.153)

These corrections are not studied in detail here.

Result in d = 2: In d = 2, K0(z) in Eq. (2.151) is not integrable at z → ∞. We obtain
the leading order behavior of L3[K0](z) at �nite z by decomposing it into the sum of a
near-�eld contribution and a far-�eld one,

L3[K0](z) = I1 + I2 , (2.154)
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with

I1 = η

∫ 1√
η

z

dz′z′K0 (z′)

∫ √
z2−1
z

−1

dw

2Wd−2

(
1− w2

) d−3
2

exp
(
−ηzw − η

√
z′2 − z2(1− w2)

)

√
z′2 − z2(1− w2)

,

(2.155)
and

I2 = η

∫ +∞

1√
η

dz′z′K0 (z′)

∫ √
z2−1
z

−1

dw

2Wd−2

(
1− w2

) d−3
2

exp
(
−ηzw − η

√
z′2 − z2(1− w2)

)

√
z′2 − z2(1− w2)

.

(2.156)
The leading order behavior of the near �eld contribution is given by

I1 ' η

∫ 1√
η

dz′K0 (z′)

∫ √
z2−1
z

−1

dw

2Wd−2

(
1− w2

)−1
2 ,

' −1

2
η ln η

Γ(0−)

π

(
1

2
+

1

π
arcsin

(√
z2 − 1

z

))
.

(2.157)

Accordingly, the leading order behavior of the far-�eld contribution is obtained as

I2 '
∫ +∞

√
η

duK0

(
u

η

)
e−u

∫ √
z2−1
z

−1

dw

2Wd−2

(
1− w2

) d−3
2 .

' −1

2
η ln η

Γ(0−)

π

(
1

2
+

1

π
arcsin

(√
z2 − 1

z

))
,

(2.158)

thus yielding at leading order

L3[K0](z) ' −η ln η
Γ(0−)

π

(
1

2
+

1

π
arcsin

(√
z2 − 1

z

))
. (2.159)

Equation (2.159) proves Eq. (2.144). We remark that this η ln η behavior emerges from the
non integrability at in�nity of the η → 0 limit of the last term in the expression of ρ0(z) in
Eq. (2.118). This term accounts for the particles that have left the obstacle after a collision
(see Sec. 2.3.1). This η ln η correction can thus be thought as originating from a return in
the vicinity of the obstacle of far away particles that have already collided with it, which is
all the more likely as random walks are recurrent in the low dimension d = 2.

Stationary distribution in the (z, w) space

Accordingly, in all dimension d ≥ 2, the stationary distribution in the (z, w) plane can be
obtained in the η → 0 limit. In domain 1 de�ned by w > 0 and z

√
1− w2 < 1, Eq. (2.103)

reduces to
f(z, w) = 0 . (2.160)

In domain 2 de�ned by w < 0, Eq. (2.106) is given in this limit by

f(z, w) = 1 + ηe−ηzw
∫ +∞

z

dz′K(z′) exp
{
−η
√
z′2 − z2(1− w2)

} z′√
z′2 − z2(1− w2)

,

= 1 .

(2.161)
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Finally, in domain 3 de�ned by w > 0 and z
√

1− w2 > 1 we obtain accordingly from
Eq. (2.110),

f(z, w) = 1 . (2.162)

Therefore, the full bulk distribution reads

f(z, w) = Θ(−w) + Θ(w)
[
Θ(z
√

1− w2 − 1) + Γ(0−)δ(z
√

1− w2 − 1)
]
. (2.163)

The surface density

The system of equations can then be closed by studying Eq. (2.90) for the surface density.
In the limit η → 0, and using Eq. (2.161)

Γ(w) =
1

d− 1
Θ(−w) . (2.164)

We therefore obtain the full probability distribution in the ballistic η → 0 limit,

P (z, w) = Θ(z − 1)

(
Θ(−w) + Θ(w)

[
Θ(z
√

1− w2 − 1) +
1

d− 1
δ(z
√

1− w2 − 1)

])

+
1

d− 1
δ(z − 1)Θ(−w) .

(2.165)

Accordingly, the spatial distribution function reads

P (z) =

∫ 1

−1

dw

2Wd−2

(1− w2)
d−3

2 P (z, w)

=
δ(z − 1)

2(d− 1)
+ Θ(z − 1)


1

2
+

∫ √
z2−1
z

0

dx

2Wd−2

(
1− x2

) d−3
2 +

1

2Wd−2(d− 1)

z2−d
√
z2 − 1


 .

(2.166)

In Fig. 2.9, we plot the evolution of Γ̂ as a function of τ at �xed σ = 1 and v0 = 1 in
dimension d = 2 obtained from the numerical simulation of Eq. (2.83). Figure 2.9 shows in
particular the convergence to 1/2 at large τ as can be seen from Eq. (2.166).
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Γ̂

τ

Figure 2.9: Evolution of Γ̂ as a function of τ at �xed σ = 1 and v0 = 1 in dimension d = 2.
Γ̂ converges to 1/2 at large τ as predicted by Eq. (2.166). Parameters: v0 = 1, σ = 1,
L = 100v0τ , T = 1010 with T the total physical time.
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Intermezzo: thermodynamics of self-pro-
pelled particle systems and eqilibrium
fluids in infinite dimension
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The purpose of this chapter is mainly to introduce some useful concepts for Chap. 4.
In Sec. 3.1, we present the main tools we will use to study and characterize the macro-
scopic behavior of self-propelled particle systems. Among the concepts introduced are: the
BBGKY hierarchy of correlation functions, the radial pair-distribution function, the e�ec-
tive self-propulsion [55] and the mechanical pressure [193]. We use the results obtained in
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Chap.2 to derive low density estimates for these observables in hard sphere systems in the
ballistic limit.

In Sec. 3.2 we turn to the di�erent subject of in�nite dimensional equilibrium �uids. We
�rst review the standard Mayer expansion of the free energy. We then show that in the
limit of large dimension the free energy is truncated, up to exponentially small corrections,
to second order in density. This is at the basis of [68] in which the authors �rst derived
an exact equation of state for in�nite dimensional hard spheres. We �nally show that the
results obtained through the Mayer expansion, for which we have no equivalent at hand in
active matter systems, can actually be recovered by an exact resummation of the BBGKY
hierarchy to all order in the density. This new dynamics-based derivation is an alternative
to the original approach of [68].

Contributions

Section 3.1

• low density estimates of the pair-distribution function, e�ective self-
propulsion and mechanical pressure of self-propelled hard spheres in the bal-
listic limit.

Section 3.2

• resummation of the BBGKY hierarchy that allows to recover the truncation of
the free energy functional to second order.

3.1 Collective properties of self-propelled particle sys-
tems and macroscopic observables

Prior to delving speci�cally into the limit of in�nite dimension, we introduce some useful
concepts to describe the macroscopic properties of large active matter systems. The equa-
tions of motion that describe the behavior of an N -body system made of self-propelled
particles interacting via pairwise forces have been introduced in Sec. 1.2.4 and read

ṙi = v0ui(t)−
∑

j(6=i)
∇riU (ri − rj) , (3.1)

where the self-propulsion ui(t) can be either of the AOUP, ABP or RTP type. Note that
the ui(t) evolve independently from each other: there is no alignment interactions in the
models we consider. The corresponding N -body master equation that evolves the proba-
bility density to observe a con�guration of {ri,ui}i=1...N can be derived from Eq. (3.1) and
it reads,

∂tP =
∑

i

∇ri ·
(
P
∑

j 6=i
∇riU (ri − rj)

)
+ v0

∑

i

ui ·∇riP +
∑

i

RiP , (3.2)
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where the operator Ri accounts for the reorientation of the self-propulsion of particle i.
The normalization of the N -body distribution function is chosen such that

∫
dr1

du1

Ωd

. . . drN
duN
Ωd

P (r1,u1; . . . ; rN ,uN , t) = 1 . (3.3)

For RTPs, each ui is a unit vector uniformly picking a random orientation at random times
drawn from a Poisson distribution with density τ−1. The evolution operatorRi thus writes

RiP =
1

τ

(∫
dui
Ωd

P − P
)
, (3.4)

from which one obtains the two-point correlation 〈ui(t)·ui(t′)〉 = e−|t−t′|/τ . Had we chosen
to describe active Brownian particles (ABPs) instead, the evolution operatorRi would have
been given by

RiP = Dr∆uiP , (3.5)

where ∆ui is the Laplacian on the unit sphere and thus 〈ui(t) · ui(t′)〉 = e−(d−1)Dr|t−t′|.
Finally, for AOUPs, the vectors ui don’t have a �xed norm. They are however chosen to
be unitary on average 〈u2

i 〉 = 1 in the stationary state to link with the above introduced
RTP and ABP models. Given this constraint, Eq. (1.18) of the introduction has to be slightly
modi�ed and now reads

dui
dt

= −ui
τ

+

√
2

dτ
ξi , (3.6)

where the Gaussian white noises have correlations 〈ξαi (t)ξβj (t′)〉 = δαβδijδ(t − t′). The
correspondingRi operator is then obtained as

RiP =
1

τ

(
∇ui · (uiP ) +

1

d
∇2

uiP

)
. (3.7)

from which one recovers 〈ui(t) · ui(t′)〉 = e−|t−t′|/τ . Interestingly, we remark that the
stationary distribution of ui reads

pst(ui) =
1√

2π/d
e−du2

i /2 , (3.8)

so that the probability distribution of its norm ui is given by

pst(ui) =
Ωd√
2π/d

ud−1
i e−du2

i /2 . (3.9)

with Ωd the surface of the (d − 1)-dimensional unit hypersphere in d dimension. In the
d � 1 limit that we will consider later on, this shows that the value ui = 1, up to vanish-
ingly small �uctuations as d→∞, eventually dominates the statistics, thus making a link
with RTPs and ABPs. At odds with equilibrium systems for which the N -body stationary
distribution function is known and is given by the Boltzmann distribution, the solution to
Eq. (3.2) remains elusive.
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3.1.1 Correlation functions and the BBGKY hierarchy

The N -body master equation in Eq. (3.2) can be analyzed through the introduction of the
n-body correlation functions,

ρ(n) (r1,u1; . . . ; rn,un; t) =
N !

(N − n)!

∫
drn+1

dun+1

Ωd

. . . drN
duN
Ωd

P (r1,u1; . . . ; rN ,uN ; t) .

(3.10)
From the ρ(n) we also de�ne the n-body distribution functions g(n) by

ρ(n) (r1,u1; . . . ; rn,un; t) =

[
n∏

i=1

ρ (ri,ui; t)

]
g(n) (r1,u1; . . . ; rn,un; t) , (3.11)

with ρ(r,u; t) = ρ(1)(r,u; t) the local density �eld in the (r,u) space. In the thermodynamic
limit, their exists an in�nite hierarchy of equations relating n-body distribution functions
g(n)(r1, . . . , rn;u1, . . . ,un) to (n+ 1)-body ones, known as the Bogoliubov–Born–Green–
Kirkwood–Yvon (BBGKY) hierarchy. In the stationary state and in a homogeneous phase
of density ρ, it reads

− v0

n∑

i=1

ui ·∇rig
(n) +

n∑

i=1

n∑

j 6=i
∇ri

(
g(n)∇riU(ri − rj)

)
+

n∑

i=1

Rig
(n)

+ ρ
n∑

i=1

∇ri

∫
dr′

du′

Ωd

g(n+1)(r1,u1; ...; rn,un; r′,u′)∇riU(ri − r′) = 0 .

(3.12)

The above equation displays a term like

ρ

∫
dr′

du′

Ωd

g(n+1)(r1,u1; ...; rn,un; r′,u′)
g(n)(r1,u1; ...; rn,un)

∇riU(ri − r′) , (3.13)

which is the mean force exerted by all the N − 1− n other particles on the particle sitting
at ri with orientation ui conditioned on the presence of the n particles at positions rk with
orientations uk. In a standard equilibrium �uid, most of the thermodynamic properties, as
the equation of state for the pressure, can be inferred from the two-point distribution func-
tion. In an active �uid, the knowledge of g(2)(r1,u1; r2,u2) also allows to compute relevant
thermodynamic observables and to get insights into the phase behavior of the system, with
however some restrictions compared to the equilibrium case as we explain next. Given its
crucial role, and in order to lighten the notations, the two-point distribution function will
simply be called g(r1,u1; r2,u2) in the following. Throughout this discussion, we will re-
strict ourselves to the case of run-and-tumble particles even though similar statements can
be made for the other models of ABPs and AOUPs.

3.1.2 The e�ective self-propulsion:

The e�ective self-propulsion is probably the most natural observable to consider in a system
made of self-propelled particles interacting via pair-wise forces [55]. The speed (or mean
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quadratic speed in the case of AOUPs) of a free particle is given by v0. In the presence of
other particles, the speed is expected to be reduced by collisions. This leads to de�ning a
density dependent speed v(ρ) as the norm of the mean (in a homogeneous phase of density
ρ) of ṙi at �xed ui. Averaging Eq. (3.1) over all the N − 1 degrees of freedom attached to
particles j for j 6= i yields,

〈ṙi〉ui = v0ui + ρ

∫
dr

du′

Ωd

g(2) (0,ui; r,u′)∇rU(r) ,

=

(
v0 + ρ

∫
dr

du′

Ωd

g(2) (0,ui; r,u′)∇rU(r) · ui
)
ui ,

= v(ρ)ui ,

(3.14)

where we have used the translational and rotational invariance of g(2) within homogeneous
phases and with the density dependent speed,

v(ρ) =

(
v0 + ρ

∫
dr

du′

Ωd

g(2) (0,ui; r,u′)∇rU(r) · ui
)
. (3.15)

In numerical simulations of ABPs interacting via a strongly repulsive WCA potential, the
e�ective velocity has been found, both in 2 and 3 dimensions, to decay linearly with ρ over
a wide range of densities until a given near close-packing density after which it roughly
vanishes. This was reported in [193, 196]. A �ner description of the decay of v(ρ) in the
dense regime can be found in the appendix of [192]. Deviations from this linear decay at
moderate densities have been reported in simulations with softer potentials, such as for
harmonic disks in [55].

3.1.3 The mechanical pressure:

Another interesting macroscopic quantity that can be derived from the two-point distri-
bution function is the mechanical pressure de�ned as the mean normal stress exerted by
an active �uid on the wall of a container. For some time, pressure remained an elusive
quantity in active matter. Indeed, in many active matter systems, the mechanical pressure
is not a state function: it does not depend solely on the bulk properties of the system but
also depends on the details of the interaction with the wall. This is the case, for instance, in
systems of particles interacting via quorum-sensing or in systems made of elongated par-
ticles [194]. However, it can be shown that the process in Eq. (3.1) (supplemented with an
interaction with an external potential to mimic the con�ning wall) admits and equation of
state for the mechanical pressure [193]. For the RTP model, the latter reads

P (ρ) = ρ
v0v(ρ)τ

d
− ρ2

2d

∫
dr

du1

Ωd

du2

Ωd

g(2)(0,u1; r,u2) r ·∇rU(r) . (3.16)

This is reminiscent of the equation of state for the pressure in an equilibrium system at
temperature T with Hamiltonian

H =
∑

i 6=j
U(ri − rj) , (3.17)
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for which the pressure in a homogeneous phase writes

P (ρ) = ρT − ρ2

2d

∫
dr g(2)(0 ; r) r ·∇rU(r) . (3.18)

The main qualitative di�erence between Eq. (3.16) and Eq. (3.18) is that in equilibrium the
�rst term reads ρ times the di�usion constant of a free particle while in the active case the
free di�usion constant v2

0τ/d is replaced by v0v(ρ)τ/d. This modi�cation is however of
great relevance. Indeed, the decay of v(ρ) with the density tends to decrease the pressure
as attractive interactions in equilibrium would do. There actually exist quite deep similar-
ities between the pressure of active �uids in Eq. (3.16) and the pressure of passive ones in
Eq. (3.18). First, and this is a direct consequence of the existence of an equation of state, in a
phase separated �uid the coexistence pressures must be equal [193]. Second, the relaxation
of the local density �eld in position space

φ(r, t) =

∫
du
Ωd

ρ(r,u, t) , (3.19)

is given [192] to leading order in the gradient expansion, by

∂tφ(r, t) = ∇2P (φ(r, t)) , (3.20)

where the function P is the same as in Eq. (3.16). Thus, as in standard equilibrium physics,
the spinodal region, which corresponds to the region of linear instability of homogeneous
phases, is also the region of negative compressibility P ′(ρ) < 0. In [193], ABPs interacting
via a WCA potential were numerically shown to display a region of negative compressibil-
ity. However, the resemblance with the equilibrium pressure does not extend any further.
In particular, it is not possible to use an equal-area law à la Maxwell on the equation of state
for the pressure to predict the binodals of the MIPS region [193]. The equation of state for
the pressure does not contain all the information needed to predict the phase diagram of
active systems but it only provides one equation that the coexisting densities must satisfy.
We do not know yet of any observable that could be measured in a homogeneous phase
and that would yield the second constraint.

3.1.4 Low density thermodynamics in the ballistic regime

In this section, we explicitly derive the �rst density corrections to the ideal gas e�ective
velocity

v(ρ) = v0 , (3.21)

and ideal gas pressure

P = ρ
v2

0τ

d
, (3.22)

for d-dimensional run-and-tumble particles in the ballistic limit v0τ � σ. This regime, that
is the only one we could obtain analytical predictions for in the one-particle against a hard
spherical obstacle case in Sec. 2.3, has however its own share of interesting features given
that it is the locus of the MIPS. For instance, in [162], the MIPS critical point of a system of
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3 dimensional active Brownian hard spheres was found to lie at a ratio v0τ/σ ' 18.8, with
σ the diameter of a sphere. The low density behavior of the system can be extracted from
the 0th order of the virial expansion of g(0,u1; r,u2) given as the solution of

− v0

2
(u2 − u1) ·∇rg + ∇r (g∇rU(r)) +

1

2
(R1g +R2g) = 0 . (3.23)

Denoting û12 = (u2 − u1) / |u1 − u2|, the solution of Eq. (3.23) in the ballistic limit is that
of Eq. (2.84) in the same limit under the substitution v0 → v0 |u1 − u2| /2, i.e

g(0,u1; r,u2) = P (r, û12)|v0→v0|u1−u2|/2 . (3.24)

From Eq. (2.165) of Sec.2.3, we therefore obtain in the dilute limit

g(0,u1; r,u2) =
1

d− 1
δ (z − 1) Θ (−w) +

[
Θ (−w) + Θ (w)

(
Θ
(
z
√

1− w2 − 1
)

+
1

d− 1
δ
(
z
√

1− w2 − 1
))]

Θ(z − 1) ,

(3.25)

with z = r/σ and w = r̂ · û12. Equation (2.93) furthermore yields

lim
hard sphere

g(0,u1; r,u2)U ′(r) =
v0 |u1 − u2|

2

w

d− 1
Θ(−w)δ(z − 1) . (3.26)

Radial distribution function The radial distribution function g(r) is found upon inte-
grating the two-point distribution one g(0,u1; r,u2) over u1 and u2. Using Eq. (3.25), we
therefore obtain

g(z) =

∫ 1

−1

dwm(w)

{
1

d− 1
δ (z − 1) Θ (−w) +

[
Θ (−w) + Θ (w)

(
Θ
(
z
√

1− w2 − 1
)

+
1

d− 1
δ
(
z
√

1− w2 − 1
))]

Θ(z − 1)

}
,

(3.27)

with the Jacobian m(w),

m(w) =

∫
du1

Ωd

du2

Ωd

δ (w − û12 · r̂) ,

=

∫
dr̂
Ωd

∫
du1

Ωd

du2

Ωd

δ (w − û12 · r̂)

=

∫ 1

−1

dw′

2Wd−2

(
1− w′2

) d−3
2 δ(w′ − w) ,

=
1

2Wd−2

(1− w)
d−3

2 .

(3.28)
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The low density radial distribution function thus reads,

g(z) =
δ(z − 1)

2(d− 1)
+Θ(z−1)


1

2
+

∫ √
z2−1
z

0

dw

2Wd−2

(
1− w2

) d−3
2 +

1

2Wd−2(d− 1)

z2−d
√
z2 − 1


 .

(3.29)
Specializing the result in physical dimensions yields

g(z) =
δ(z − 1)

2
+ Θ(z − 1)

[
1

2
+

1

π
arcsin

(√
z2 − 1

z

)
+

1

π
√
z2 − 1

]
, (3.30)

in two dimensions and

g(z) =
δ(z − 1)

4
+ Θ(z − 1)

[
1

2
+

√
z2 − 1

2z
+

1

4z
√
z2 − 1

]
, (3.31)

in three dimensions. Note that in any dimension the radial distribution function is the sum
of a delta peak accumulation at contact and a bulk term at z > 1. The bulk value of the
distribution function is monotonically decreasing and has a square root divergence at z = 1.
E�ectively, in the stationary state, there is a strong attraction between the particles. We next
specify the result in the case d� 1 that will be in the end our main focus. Introducing

h = d (z − 1) , (3.32)

the scale over which the radial distribution decays, the latter takes takes the form

g(h) =
δ(h)

2
+ Θ(h)

[
1

2

(
1 + erf

(√
h
))

+
e−h√
4πh

]
. (3.33)

The e�ective self-propulsion We now compute the small density corrections to the
e�ective self-propulsion of run-and-tumble hard spheres. Using Eq.(3.26), the formula for
the e�ective self-propulsion Eq. (3.15) reduces to,

v(ρ) = v0

[
1 +

ρσd

2(d− 1)

∫
dr̂

du2

Ωd

(r̂ · u1) |u2 − u1| (r̂ · û12) Θ (−r̂ · û12)

]
. (3.34)

The above integral can be computed as follows,
∫

dr̂
du2

Ωd

(r̂ · u1) |u2 − u1| (r̂ · û12) Θ (− (r̂ · û12))

=

∫
du2

Ωd

|u2 − u1|
(∫

dr̂ (r̂ · û12) Θ (−r̂ · û12) r̂
)
· u1

=

∫
du2

Ωd

|u2 − u1|
(∫

dr̂ (r̂ · û12)2 Θ (−r̂ · û12)

)
u1 · û12

= − Ωd

2d
.

(3.35)

Thus the e�ective self-propulsion is given by,

v(ρ) = v0

(
1− ρVd(σ)

4(d− 1)

)
, (3.36)
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with Vd(σ) the volume of a sphere of radius σ thus making explicit the decrease of the
self-propulsion due to collisions. In terms of the packing fraction

ϕ = ρVd
(σ

2

)
, (3.37)

the result reads, both in 2 and 3 dimensions, as

v(ϕ) = v0 (1− ϕ) . (3.38)

It is very interesting to note that in numerical simulations of ABPs interacting via a WCA
potential, the linear decay of the e�ective self-propulsion extends beyond the small ϕ
regime. Furthermore, as d → ∞, it appears natural from Eq. (3.36) to work in density
regimes in which

ρVd(σ)

d
=

2dϕ

d
= ϕ̂ , (3.39)

is held �xed. As we will see in our study of in�nite dimensional �uids, starting in Sec. 3.2,
this is indeed the correct in�nite dimensional density scaling. As a function of ϕ̂, the e�ec-
tive self-propulsion thus writes in large dimension

v(ϕ̂) = v0

(
1− ϕ̂

4

)
. (3.40)

The mechanical pressure We compute the ρ2 term of the density expansion of the me-
chanical pressure of run-and-tumble hard spheres. From Eqs. (3.16) and (3.26), computing
the latter reduces to evaluating,

∫
dr̂

du1du2

Ω2
d

|u1 − u2| (r̂ · û12) Θ (−r̂ · û12)

=

[∫
du1du2

Ω2
d

√
1− u1 · u2

] ∫ 0

−1

dw

2Wd−2

w
(
1− w2

) d−3
2 ,

= −
√

2AdΩd

2Wd−2(d− 1)
,

(3.41)

with

Ad =

∫
du1du2

Ω2
d

√
1− u1 · u2 ,

=

∫ 1

−1

dw

2Wd−2

(
1− w2

) d−3
2
√

1− w .
(3.42)

While a general formula for Ad can be found in terms of hypergeometric functions, here
we display only its value in some particular dimensions,

Ad =





2
√

2
π

if d = 2 ,

2
√

2
3

if d = 3 ,

1 if d→∞ .

(3.43)
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We thus obtain the equation of state for the pressure as

P = ρ
v2

0τ

d

(
1− ρVd(σ)

4(d− 1)

)
+
ρ2Vd(σ)

2(d− 1)

v0σAd√
2(d− 1)2Wd−2

. (3.44)

Therefore, the equilibrium like-term in the equation of state gives a positive contribution to
the second coe�cient of the virial expansion, which is natural for repulsive potentials, while
the v(ρ) term gives a negative contribution, thus accounting for the e�ective attraction
between the particles. The positivity of the second virial coe�cient directly depends on
the value of the Peclet number Pe = v0τ/σ: it is positive at small Pe, i.e. at low activity,
and negative at high Pe. Expressed in terms of the packing fraction ϕ, it reads in physical
dimensions,

P

ρ
=
v2

0τ

2
+
ϕv0σ

π2

(
1− π2

8
Pe

)
(3.45)

in d = 2 and,
P

ρ
=
v2

0τ

3
+
ϕv0σ

3
(1− Pe) , (3.46)

in d = 3. The critical Pe one could try to estimate from the change of sign in the second
virial coe�cient in Eqs. (3.45) and (3.45) are around 1 and are therefore much lower than
the actual critical Peclet number observed in numerical simulations. Thus, if it describes
quite correctly the actual v(ρ) part of the equation of state, at least for hard potentials, the
low density estimates tend to signi�cantly underestimate the amplitude of the (repulsive)
equilibrium-like term of the equation of state. Lastly, at large d, and using the density
scaling of Eq. (3.39), the equation of state writes

P

ρ
=

v0√
d

(
v0τ√
d

(
1− ϕ̂

4

)
+
ϕ̂

4

σ√
π

)
. (3.47)

The above equation thus suggests that the proper in�nite-dimensional scalings of the model
parameters so as to maintain a competition between activity and repulsive pairwise inter-
actions leading to a complex spatial organization keep the ratio v0τ/

√
d �xed.

3.2 TheMayer expansion of standard equilibrium�uids
and the in�nite dimensional limit

3.2.1 Mayer expansion of the grand canonical potential

The Mayer expansion is a standard tool of liquid theory. Many good and thorough reviews
[92, 158, 135] on the subject can be found in the literature. The present section contains
no original material but instead it intends to present the key ideas of the Mayer expansion
with a particular emphasis on the role of the in�nite dimensional limit. Let us start by
considering an equilibrium system at temperature T = β−1 in a box of volume V made of
interacting particles with Hamiltonian

H(ri) =
∑

i

V (ri) +
∑

i<j

U(ri − rj) , (3.48)
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where the Hamiltonian comprises an external potential V and a pairwise interaction poten-
tial U . For the sake of lightness, the momenta degrees of freedom are forgotten throughout
this presentation. The system is studied in the grand-canonical ensemble with chemical
potential µ for which the grand-canonical partition function writes

Ξ =
+∞∑

N=0

1

N !

∫ n∏

i=1

dri
N∏

i=1

eβµ−βV (ri)
N∏

i<j

e−βU(ri−rj) . (3.49)

Hereafter, we interpret the latter as a functional of the generalized chemical potential

µ(ri) = βµ− βV (ri) , (3.50)

and we introduce the Mayer function

f(ri, rj) = −1 + e−βU(ri−rj) , (3.51)

so that the grand-canonical partition functional writes

Ξ[µ] =
+∞∑

N=0

1

N !

∫ N∏

i=1

dri
N∏

i=1

eµ(ri)
N∏

i<j

(1 + f(ri, rj)) . (3.52)

The idea of the Mayer expansion is to expand the product over the (i, j) pairs. Thus, its very
core rests on the pair-structure of the stationary distribution. This is important given that,
while this structure is very natural in standard equilibrium �uids, it is expected not to hold
in active ones (see for instance the small τ expansion in [60]). This will be discussed more
in depth in Sec. 4.2 and Sec. 4.3. The resulting series is better captured by a diagrammatic
expansion [148],

Ξ[µ] =
+∞∑

N=0

1

N !

∑

G∈UN
Γ(G) , (3.53)

where UN is the ensemble of labeled graphs withN vertices and Γ(G) is the corresponding
amplitude of such a graph. The latter is computed as follows,

Γ(G) =

∫ NG∏

i=1

[
dri eµ(ri)

] ∏

(i,j)∈E(G)

f(ri, rj) , (3.54)

with NG the number of vertices of G and E(G) its set of edges. The set of vertices of G
is called V (G). Thus, each vertex i of G corresponds to a eµ(ri) term and each edge, say
between vertices i and j, corresponds to f(ri, rj). The N = 1 contribution is trivial and is
represented by a graph with a single vertex

1 =
∫

dr eµ(r) . (3.55)

The N = 2 term is made of two two-vertex graphs,

1 2 + 1 2 =
∫

dr1dr2 eµ(r1)eµ(r1) +
∫

dr1dr2 eµ(r1)eµ(r1)f(r1, r2) , (3.56)
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and the N = 3 contribution already contains 8 three-vertex ones,

1 2

3

+
1 2

3

+
1 2

3

+
1 2

3

+
1 2

3

+
1 2

3

+
1 2

3

+
1 2

3

(3.57)
Two graphs are said to be isomorphic if they are the same up to a permutation of the vertices
labels: they hence correspond to the same unlabeled graph. Two isomorphic graphs have
equal amplitude. Such graphs can therefore be grouped together and the series in Eq. (3.53)
can be rewritten as a sum over unlabeled graphs,

Ξ[µ] =
+∞∑

N=0

∑

g ∈VN
A(g) , (3.58)

where VN is the set of unlabeled graphs with N vertices and the graph amplitude A(g) is
given as

A(g) =
1

Sg
Γ(G) , (3.59)

where G is any labeling of g (we will keep this notation in the following) and Sg its sym-
metry factor. The latter is de�ned as the number of permutations of the vertex labels of
any labeling G of g that leave the graph invariant, i.e. that preserves the set of vertices and
edges. Indeed, one has from Eq. (3.53),

A(g) =
ng
N !

Γ(G) , (3.60)

with ng the number of topologically inequivalent (i.e. with a di�erent set of edges) labeling
of g, thus yielding Eq. (3.59). The series in Eq. (3.58) thus writes as,

Ξ[µ] = 1 + + + + + + +

+ . . .

(3.61)
A huge number of such diagrams can be further simpli�ed by considering the logarithm
of the functional Ξ[µ] that, as is common in statistical and quantum �eld theory [215],
suppresses the disconnected diagrams in an instance of the linked-cluster theorem. Let C
be the set of connected diagrams and denote its elements by Cq for q ∈ N. Any disconnected
diagram g can then be parametrized by the number of times nq each diagram Cq in C appears
in g. The symmetry factor Sg can then be expressed as

+∞∏

q=1

nq!S
nq
Cq , (3.62)
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where the �rst term in the product accounts for permutations of the indices between the
di�erent instances of Cq and the second for the ones within single instances. Thus,

A(g) =
+∞∏

q=1

Γ(Cq)nq
nq!S

nq
Cq
,

=
+∞∏

q=1

A(Cq)nq
nq!

.

(3.63)

and so the functional Ξ[µ] writes

Ξ[µ] =
+∞∑

n1=0

+∞∑

n2=0

· · ·
+∞∑

nq=0

+∞∏

q=1

A(Cq)nq
nq!

= exp

(
+∞∑

q=1

A(Cq)
)

= eW [µ] ,

(3.64)

where the grand canonical potential W [µ] is de�ned as the sum over the connected dia-
grams,

W [µ] = + + + + . . .

(3.65)

3.2.2 The free energy functional

Taking the functional derivative of the grand canonical potential W [µ] yields the mean
density �eld,

δW [µ]

δµ(r)
=

〈
N∑

i=1

δ(r− ri)

〉
= ρ(r) , (3.66)

where the average is taken with respect to the grand-canonical measure in Eq. (3.49). We
thus de�ne the free energy functional F [ρ] as the Legendre transform of W [µ],

βF [ρ] = sup
µ

(
−W [µ] +

∫
drρ(r)µ(r)

)
. (3.67)

The grand canonical potential W [µ] being a convex functional of µ(r) [83], the supremum
is unique and is reached at µ∗[ρ] de�ned such that

ρ(r) =
δW [µ]

δµ(r)

∣∣∣∣
µ∗[ρ]

, (3.68)

i.e. at the appropriate generalized chemical potential µ(r) such that the grand canonical
measure yields ρ(r) as a mean density �eld. Hence, we have

βF [ρ] = −W [µ∗[ρ]] +

∫
drρ(r)µ∗[ρ](r) , (3.69)
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and accordingly

β
δF [ρ]

δρ(r)
= µ∗[ρ](r) . (3.70)

Let us �nally introduce, for some function µ(r), the functional G[ρ] de�ned as,

G[ρ] = F [ρ]− T
∫

drρ(r)µ(r) . (3.71)

From Eq. (3.70) and from the convexity of G, it appears that G is minimal at the mean
density �eld corresponding to the chemical potential µ(r).

3.2.3 Graph expansion of the free energy functional

Taking the Legendre transform of Eq. (3.65) suppresses the diagrams that are not 1-particle
irreducible, i.e. the diagrams that can be disconnected upon the removal of a vertex (if it
exists such a vertex is called an articulation one). As we will prove next, the free energy
functional indeed writes

−βF [ρ] =
∫

drρ(r) (1− ln ρ(r)) + + + + +

+ . . .

(3.72)
where the dots stand for the summation over all the remaining 1-particle irreducible dia-
grams and where the vertices are understood as ρ(r) vertices and not eµ(r) ones anymore
as in Eq. (3.65). The proof of this identity goes as follows. First, we di�erentiate Eq. (3.65)
to get an expansion of ρ(r) as a function of µ(r),

ρ(r)e−µ(r) = 1 + 1 +
1

+
1

+
1

+ . . .

(3.73)

The white vertex sits at position r. It is not integrated upon and its value is �xed to one. The
dots stand for a summation over all the remaining connected diagrams with a white unit-
valued vertex. In computing the amplitude of a graph in Eq. (3.73), the symmetry factor is
that of the black vertices only. The combinatorics indeed work out nicely [92] as we show
now. We have indeed,

ρ(r) =
δ

δµ(r)

(∑

g ∈C

1

Sg
Γ(G)

)
,

=
∑

g ∈C

1

Sg
eµ(r)

∑

i∈V (G)

Γ (Gi) ,

(3.74)

where Gi is the labeled graph extracted from G by replacing vertex i by a unit-valued
white vertex. Di�erent Gi (for di�erent i) can have the same amplitude and the series can
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be rearranged as a sum over the unlabeled connected diagrams with a white unit-valued
vertex (which form the set called Cw),

ρ(r)e−µ(r) =
∑

g ∈Cw

ng
Sg̃

Γ (G) , (3.75)

where g̃ is the graph obtained from g by blackening the white vertex and ng is the number
of vertices i of G̃ such that Γ(G) = Γ(G̃i). Let i1 be such a vertex. As Γ(G̃i1) = Γ(G̃j) i�
there exists a permutation of the vertices of G̃i1 that brings G̃i1 to G̃j , we obtain

ng = card
{
j ∈ J1, nV K s.t.∃ an invariant permutation of the indices of G̃ with i1 → j

}
,

(3.76)
with nV the number of vertices of G. This exactly reconstructs the symmetry factor Sg
of the graph g ∈ Cw in Eq. (3.75), thus proving Eq. (3.73). Next, we take the logarithm of
Eq. (3.73). The reason that this is so is that if the white vertex is an articulation vertex, then
the amplitude of the corresponding (labeled) graph is the product of the amplitude of the
(labeled) ones attached to the white vertex. Thus, the linked-cluster theorem applies as in
Eq. (3.65) and we obtain

− µ(r) = − ln ρ(r) + Σ[µ] . (3.77)

where Σ[µ] is the sum over all the diagrams in Cw where the white vertex is not an articu-
lation one. Now, the goal is to invert Eq. (3.77) so as to express µ(r) as a functional of ρ(r).
Following Eq. (3.70), this relation can then be integrated to yield the free energy functional
Eq. (3.72). Inverting the relation in Eq. (3.77) indeed yields ,

−µ∗[ρ](r) = − ln ρ(r) + 1 +
1

+ . . .

(3.78)

where the black vertices are now ρ(r) ones and the sum extends over all the remaining
1-particle irreducible diagrams (thus also excluding those for which a black vertex is an
articulation one). This formula can be checked order by order [102] using the Mayer func-
tion f as an organizing device for the series in Eq. (3.77). A more systematic derivation of
Eq. (3.78) was presented in [158]. We brie�y sketch their argument without entering into
further details of the combinatorics. Any diagram in Σ[µ] can be uniquely described by
a 1-particle irreducible diagram containing the white vertex (precisely its maximally irre-
ducible subdiagram containing it) to the black vertices of which are attached diagrams of
Cw in such a way that the white vertex of these diagrams in Cw is superimposed to a black
one of the 1-particle irreducible one. This is better seen on an example,

1

−→
1 < −−−

< −−− 1

1 (3.79)

Thus the series in Σ[µ] can be reorganized as a sum over all 1-particle irreducible diagrams
for which the vertices eµ(r) are replaced by a sum over all the diagrams that can be connected
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to the black vertices of the 1-particle irreducible ones, i.e. all the diagrams in Cw,

eµ(r)

(
1 + 1 +

1

+
1

+
1

+ . . .

)

(3.80)

But according to Eq. (3.73), the series between parenthesis in the above equation exactly
equals ρ(r)e−µ(r). Thus Σ[µ] can be replaced by a sum over 1-particle irreducible diagrams
with one white unit-valued vertex and ρ(r) black vertices. This hence proves Eq. (3.78)
and from it Eq. (3.72). Once again, the combinatorial aspects of the proof in [158] are quite
tedious and were not detailed in the above. As we will see in Sec. 3.2.5, the key aspect
in Eq. (3.72) is the absence, apart from the two-vertex one, of tree graphs in the Mayer
expansion of the free energy functional.

3.2.4 The Ornstein-Zernike equation

We stress that not only the �rst derivative of the free energy functional prescribes the mean
density �eld but its second derivative also tells us about the structure of the �uid. This is
this relation, known as the Ornstein-Zernike equation [166], that we phrase out in what
follows. First, di�erentiating one more time Eq. (3.70) yields

β
δ2F [ρ]

δρ(r)δρ(r′)
=
δµ∗[ρ](r)
δρ(r′)

(3.81)

Furthermore, di�erentiating Eq. (3.68) we obtain,
∫

δ2W [µ]

δµ(r)δµ(r′′)

∣∣∣∣
µ∗[ρ]

δµ∗[ρ](r′′)
δρ(r′)

dr′′ = δ(r− r′) . (3.82)

As in Sec. 3.1, we introduce the pair-distribution function g(r, r′) and h(r, r′) de�ned by

g(r, r′) = 1 + h(r, r′) (3.83)

so that h(r, r′) vanishes as |r− r′| → ∞. It can be obtained from the second-derivative of
the grand canonical potential W [µ] with respect to µ,

δ2W [µ]

δµ(r)δµ(r′)

∣∣∣∣
µ∗[ρ]

= ρ(r)ρ(r′)h(r, r′) + ρ(r)δ(r− r′) . (3.84)

We then introduce c(2)(r, r′), the direct pair-correlation function de�ned as the second
derivative of F [ρ] with the ideal gas contribution subtracted,

−β δ2F [ρ]

δρ(r)δρ(r′)
= c(2)(r, r′)− 1

ρ(r)
δ(r− r′) . (3.85)

Inserting Eq. (3.84) and Eq. (3.85) into Eq. (3.82) we ultimately obtain the Ornstein-Zernike
equation

h(r, r′) = c(2)(r, r′) +

∫
dr′′ρ(r′′)h(r, r′′)c(2)(r′, r′′) . (3.86)
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3.2.5 The in�nite dimensional limit of the Mayer expansion

A geometrical argument:

In [68], Frisch and collaborators computed exactly the equation of state of in�nite dimen-
sional equilibrium hard spheres. This important work paved the way for the high dimen-
sional limit to become instrumental in devising mean �eld theories of interacting particle
systems. The key feature of their work is the understanding that in Eq. (3.65), only tree
diagrams contribute to the Mayer expansion in this limit. Indeed, each diagram with a loop
is exponentially suppressed as d → ∞. As we explain in more details below, the reason is
geometric and can be understood from the following facts. We do not intend to provide a
rigorous proof of the results of [68] but rather to give some intuition about the peculiarities
of the large d limit. First, consider n uniformly and independently distributed unit vectors
ûi for i ∈ J1, nK. It is well-known that for any pair (i 6= j), ûi · ûj = O

(
d−1/2

)
in the sense

that this scalar product becomes Gaussian distributed in the large d limit,

lim
d→∞

P
(
x =
√
d ûi · ûj

)
=

1√
2π

e−x
2

2 . (3.87)

with P (x) the probability distribution of x. We are now interested in a rough estimate of
the probability that the {ûi}i∈J1,nK form a "closed loop", i.e. that there exists a subset U of
J1, nK such that ∣∣∣∣∣

∑

i∈U
ûi

∣∣∣∣∣ < ε , (3.88)

where ε is some �xed constant smaller than 1, as illustrated in Fig. 3.1. The above condition
requires that there exists at least a pair (i 6= j) such that ûi · ûj = O(1). But as shown in
Eq. (3.87), the probability for this to occur is exponentially suppressed as d → ∞. Thus
the probability of observing a "closed loop" decays exponentially to zero as the number
of directions in which the ûi’s can point increases. To complete the argument, consider

û1

û2 û3

û4

û5

û6ûn

Figure 3.1: A con�guration of the ûi displaying a closed loop. The dashed circle has radius
less than ε.

a graph in the expansion of the free energy functional that contains a loop r1 → r2 →
r3 · · · → rn → r1 where ri → rj simply means that there exists an edge between vertices i
and j. For i ∈ J1, n− 1K we introduce ui = ri+1− ri. In the hard sphere case, the presence
of an edge constrains the integration volume to

ui ≤ σ , (3.89)
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whereas the closing loop edge rn → r1 imposes in a way similar to Eq. (3.88),
∣∣∣∣∣
n−1∑

i=1

ui

∣∣∣∣∣ ≤ σ . (3.90)

Now, in a high dimensional space, all the volume of a ball of �nite radius R is concentrated
within a shell of thickness O(1/d) around its surface. Then, in an overwhelming fraction
of the integration volume, the constraint in Eq. (3.89) becomes

ui ' σ , (3.91)

in the sense that d (ui − σ) is �nite as d→∞. And we are back to �rst case of loop-closing
with unit vectors that is exponentially unlikely. These ideas are at the basis of the results in
[68]. This is con�rmed by an explicit computation of the �rst terms of the Mayer expansion.
However, prior to this, we show how to scale appropriately the interaction potential, or
equivalently the Mayer function, as well as the density in order to get meaningful results
as the dimension increases.

Scalings in the in�nite dimensional limit:

In [68], the authors focused on the behavior of classical hard spheres of diameter σ. Their
conclusions can nevertheless be generalized beyond the hard sphere case by studying spher-
ically symmetric potentials

U (ri, rj) = U (ri − rj) = U (|ri − rj|) , (3.92)

that scale, together with the temperature, appropriately with the dimension in such a way
that [136]

lim
d→∞

βU(r) = β̂Û(h) with h = d (r/σ − 1) , (3.93)

with both β̂ and Û �nite and Û(−∞) = +∞ and Û(+∞) = 0. The considered potentials
are thus short-ranged with hard core at r ' σ and the Mayer function in Eq. (3.51) interpo-
lates between−1 and 0 over a shell of thickness O(1/d) located around r = σ. This allows
the qualitative arguments of Sec. 3.2.5 to hold for a generic rescaled potential Û(h). We
denote the rescaled Mayer function by

lim
d→∞

f(r) = f̂(h) = −1 + e−β̂Û(h) . (3.94)

While the corresponding potential is singular, hard spheres indeed belong to this class given
that their Mayer function writes

fHS(r) = −Θ (σ − r)⇒ f̂HS(h) = −Θ(−h) . (3.95)

This scaling implies that each particle interacts at a given time with roughly ρVd(σ) other
particles where ρ is the mean local density. Indeed, all the particles another particle can
interact with are located in a shell of thickness O(1/d) around σ and the volume of such a

68



Intermezzo: thermodynamics of self-propelled particle systems and eqilibrium
fluids in infinite dimension

shell isO (Vd(σ)). This is a peculiarity of large dimensional hyperspheres whose volume is
concentrated near their surface. As in [2, 136, 171] we focus on density regimes for which
each particles interacts at a given time with O(d) other particles, i.e. in a regime where

ρVd(σ)

d
= ϕ̂ , (3.96)

is held �xed, as already conjectured in Sec. 3.1. This scaling leaves room for nontrivial
collective behavior. For example, in�nite dimensional equilibrium hard spheres undergo a
dynamical glass transition at ϕ̂ = 4.807 [136]. Nevertheless, it still allows for considerable
simpli�cation of the thermodynamics. The truncation of the free energy functional con-
jectured in [68] to second order in its density expansion is indeed expected to break down
only at much larger densities ϕ̂ ∼ (e/2)d/2 [67].

First terms of the Mayer expansion in the in�nite dimensional limit:

We now explicitly compute the amplitude of the �rst two graphs of the Mayer expansion of
the free energy functional in a homogeneous phase of density ρ(r) = ρ. This will illustrate
the exponential suppression of the loop diagrams and the truncation of the free energy. The
two-vertex diagram is given by

= 1
2

∫
dr1dr2 ρ(r1)ρ(r2)f(r1, r2) ,

= V
2
ρ2
∫

drf(r) ,

= N
2
ρVd(σ)

∫
dh eh

(
−1 + e−β̂Û(h)

)
,

(3.97)

where Vd(σ) is the volume of a sphere of radius σ. Accordingly, the three-vertex one is
obtained as

= V
3!
ρ3
∫

drdr′f(r)f(r′)f(r− r′) ,

' N
3!

(ρVd(σ))2 ∫ dh dh′eheh′ f̂(h)f̂ (h′)
∫ 1

−1
dx

2Wd−2

(
1− x2

2

) d−3
2
f̂
(
d
(√

2− 2x− 1
))
.

(3.98)
where the last line is obtained to leading order by neglecting small corrections in the argu-
ment of the third f̂ and where x denotes r̂ · r̂′. The formula in Eq. (3.98) is quite transparent.
On the one hand, the angular measure on the (d−1)-dimensional unit sphere concentrates x
around 1/

√
d. On the other hand, the last f̂ factor vanishes unless x > 1/2, i.e. x = cos(θ)

with θ < π/3 (this comes as no surprise as this is the value of the angles in an equilateral
triangle). Being more explicit requires knowing more about the function f̂ . If we take the
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hard sphere Mayer function of Eq. (3.95) we obtain,

' N
3!

(ρVd(σ))2 ∫ 1

1/2
dx

2Wd−2

(
1− x2

2

) d−3
2
,

' N
3!

(ρVd(σ))2 3
2π
√
d

(√
3

2

)d−3

.
(3.99)

The above diagram thus decays to zero as αd with α =
√

3/2 < 1. Indeed, it is only in den-
sity ranges in which ρVd(σ) is exponential in d, much denser that the scalings considered
in this work, that the e�ect of the above diagram can become relevant. By extending this
argument to all the remaining loop diagrams of Eq. (3.72) and upon assuming that the sum
over the diagrams and the large d limit can be commuted (a proof of this statement can be
found in [67]), we conclude that the free energy is truncated to second order in its density
expansion

lim
N→∞

βF [ρ(r) = ρ]

N
= (ln ρ− 1) +

ρVd(σ)

2

∫
dh eh

(
1− e−β̂Û(h)

)
. (3.100)

The pressure of a homogeneous phase can be derived from the above equation,

P = ρT

(
1 +

dϕ̂

2

∫
dh eh

(
1− e−β̂Û(h)

))
, (3.101)

thus reproducing the main result of [68]. This reasoning extends beyond the homogeneous
phase case and writes for a generic density pro�le locally satisfying the scaling hypothesis
Eq. (3.96),

βF [ρ] =

∫
drρ(r) (ln(ρ(r))− 1) +

1

2

∫
dr1dr2ρ(r1)ρ(r2)f(r1, r2) . (3.102)

3.2.6 The Ornstein-Zernike equation again

We are now in position to use the Ornstein-Zernike equation in Eq. (3.86) in order to predict
the structure of the in�nite dimensional �uid. In any dimension d, an expansion the of
the direct pair-correlation function c(2)(r1, r2) can be obtained by di�erentiating Eq. (3.72).
Making the position of the white vertices explicit, the latter reads

c(2)(r1, r2) = r1 r2 +
r1 r2

+
r1 r2

+
r1

r2

+ . . .

(3.103)

where the sum extends over all 1-particle irreducible diagrams with two white vertices at
r1 and r2. If |r1 − r2| ' σ, in the sense that d (|r1 − r2| − σ) is kept �nite as d→∞, then
following the same path as in the above leads to truncating the expansion at �rst order and
to neglecting all loop diagrams, i.e.

lim
d→∞

c(2)

(
|r1 − r2| = σ

(
1 +

h

d

))
= f̂(h) . (3.104)
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Accordingly, if r1 and r2 are "far away" so that d (|r1 − r2| − σ) → +∞ all the diagrams
yield vanishingly small contributions and

c(2) (r1, r2) = 0 . (3.105)

The vanishing of the �rst three diagrams is indeed immediate since they all display a (r1, r2)
edge. The result can then be con�rmed by explicit computation of the fourth one, the
argument being the same for all the others. In the hard sphere case, it reads

r1

r2

= ρ2

2

(∫
drf(r)f (r1 − r2 − r)

)2

= ρ2

2

(∫
drdr̂ rd−1 Θ(σ − r)Θ

(
σ −

√
|r1 − r2|2 + r2 − 2 |r1 − r2| r n̂12 · r̂

))2

= 0 ,

(3.106)
up to exponentially small corrections. However, no such simpli�cation occurs in the regime
where the two points r1 and r2 nearly superimposes and d |r1 − r2| is �xed as d→∞. This
can be seen on the second diagram that at r1 = r2 simply reduces to

r1 r1
= −dϕ̂

∫
dhehf̂(h)2 .

(3.107)

Notice that this cannot be anticipated directly from Eq. (3.102). This is however not an ob-
stacle for solving the Ornstein-Zernike equation Eq. (3.86) as we know on general grounds
that, due to the hard-core exclusion, h(r) = −1 whenever limd→∞ d (σ − r) = +∞. Taking
advantage of the translational and rotational symmetries of homogeneous phases, Eq. (3.86)
can be rewritten as

h(r) = c(2)(r) +

∫
dr′c(2) (|r− r′|)h(r′) , (3.108)

which needs to be studied only for r & σ. This equation can be solved by noting that for
r & σ, ∫

dr′c(2) (|r− r′|) c(2)(r′) = 0 , (3.109)

up to exponentially small corrections provided there existsα ∈ [0, 1[ such that rαdc(2)(r)→
0 as r → 0. Given that none of the graphs contributing to the expansion of c(2)(r1, r2)
diverges as r2 → r1, this is a reasonable assumption. For r & σ we therefore obtain,

h(r) = c(2)(r) , (3.110)

from which one can deduce the 2-body distribution function,

lim
d→∞

g

(
r = σ

(
1 +

h

d

))
= e−β̂Û(h) . (3.111)

and g(r) = 1 whenever limd→∞ d (r − σ) = +∞. The latter thus reduces to its value in
the dilute limit, consistently with the expression for the pressure shown in Eq. (3.101).
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3.2.7 Equilibrium in�nite dimensional �uids from the BBGKY hi-
erarchy

In this section, we present a dynamics-based alternative derivation of the aforementioned
results starting from the BBGKY hierarchy of distribution functions. The equations of mo-
tion for the N -particle equilibrium system read

ṙi = −
∑

j(6=i)
∇riU (ri − rj) +

√
2Tηi , (3.112)

with η a zero mean Gaussian white noise with unit variance and where the potential U is
rotationally invariant. The scalings introduced in Sec. 3.2 are assumed to hold in the large
dimensional limit, i.e. β = T−1 is held �xed with

lim
d→∞

U(r) = Û(h) with h = d (r/σ − 1) , (3.113)

and
lim
d→∞

ρVd(σ)

d
= ϕ̂ . (3.114)

In equilibrium, the BBGKY hierarchy of distribution functions reads,

T
n∑

i=1

∇rig
(n) +

n∑

i=1

n∑

j 6=i

(
g(n)∇riU(ri − rj)

)

+ ρ
n∑

i=1

∫
dr′ g(n+1)(r1, . . . , rn, r′)∇riU(ri − r′) = 0 .

(3.115)

We �nd it convenient to introduce an in�nite, virial-like, series expansion of the correlation
functions in powers of ϕ̂. For the two-point function, we thus write

g(2)(r1, r2) =
+∞∑

p=0

ϕ̂ pγ(2)
p (r1, r2) , (3.116)

while similar expansion can be written for any n-body distribution function. To the lowest
order in the density we have,

γ
(2)
0 (r1, r2) = g0(r1 − r2) = e−βU(r1−r2) , (3.117)

where the above equation de�nes g0. By truncating the hierarchy to order n ≥ 2, we have
access to all γ(2)

p (r1, r2) for p ≤ n− 2. We thus start by assuming such a truncation holds,
i.e. we look for g(n)(r1, . . . , rn) such that

T
n∑

i=1

∇rig
(n) +

n∑

i=1

n∑

j 6=i

(
g(n)∇riU(ri − rj)

)
= 0 . (3.118)

The solution to this equation is given by the n-body Boltzmann weight,

g(n)(r1, . . . , rn) =
n∏

i<j

g0(ri − rj) . (3.119)
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We can now insert this solution into the hierarchical equation at order n−1. This will give
us the �rst order term of the density expansion of g(n−1). We thus have to compute for any
k ∈ J1, n− 1K,

ρ

(
n−1∏

i<j

g0 (ri − rj)

)∫
dr′
(
n−1∏

i 6=k
g0 (ri − r′)

)
g0 (rk − r′)∇rkU (rk − r′)

=− ρ
(
n−1∏

i<j

g0 (ri − rj)

)∫
dr′
(
n−1∏

i 6=k
g0 (ri − rk − r′)

)
g0 (r′)∇r′U (r′) ,

= ρTσd−1

∫
dh′eh′dr̂′

(
n−1∏

i 6=k
g0

(√
|ri − rk|2 + σ2 − 2 |ri − rk|σr̂ · n̂ik

))
f̂ ′(h′) r̂′

×
(
n−1∏

i<j

g0 (ri − rj)

)
.

(3.120)

with n̂ik = (ri − rk) / |ri − rk| and where we have neglected the irrelevant O(1/d) correc-
tions in the argument of the g0’s inside the integral. First, due the product of g0’s outside
the integral, the above term is non-vanishing only if |ri − rk| & σ. Thus, as seen in Sec. 3.2,
and except in an exponentially small fraction of the integration volume,

g0

(√
|ri − rk|2 + σ2 − 2 |ri − rk|σr̂ · n̂ik

)
= 1 , (3.121)

as typically r̂ · n̂ik = O(1/
√
d). Therefore, up to corrections that are exponentially small in

d,

ρ

(
n−1∏

i<j

g0 (ri − rj)

)∫
dr′
(
n−1∏

i 6=k
g0 (ri − r′)

)
g0 (rk − r′)∇rkU (rk − r′)

= ρTσd−1

(
n−1∏

i<j

g0 (ri − rj)

)∫
dh′eh′dr̂′f̂ ′(h′) r̂′ ,

= 0 .

(3.122)

Hence, the mean force exerted by the surrounding �uid on each of the n−1 tagged particles
vanishes in the in�nite dimensional limit. At �nite d such a mean force emerges on particle
k as the distribution of the n − 2 other tagged ones biases in an anisotropic way that of
the remaining particles of the �uid. This e�ect is exponentially suppressed at d � 1.
Consequently, the expression of g(n−1) to the �rst order in ϕ̂ reduces, up to exponentially
small corrections, to its 0th order one,

g(n−1)(r1, . . . , rn) =
n−1∏

i<j

g0(ri − rj) . (3.123)

The same argument can then be repeated for the hierarchical equation to order n− 2 and
then all the way down to the equation for g(2) thus showing that at order ϕ̂n−2, the density
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expansion of g(2) is truncated after the �rst term. This holds for any n > 2 thus in the end
showing

g(2)(r1, r2) = g0 (r1 − r2) , (3.124)

in agreement with the result obtained from the Ornstein-Zernike equation in Eq. (3.111).
The same argument can be used to study higher order distribution functions and obtain
∀n > 2,

g(n)(r1, . . . , rn) =
n∏

i<j

g0(ri − rj) , (3.125)

thus completely elucidating the structure of the in�nite dimensional �uid. In particular, the
Kirkwood approximation

g(3)(x1,x2,x3) = g(2)(x1,x2)g(2)(x1,x3)g(2)(x2,x3) , (3.126)

holds in this limit.
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Understanding the collective behavior of simple liquids has been a fundamental sta-
tistical mechanical challenge since its early days [92]. The absence of a well-de�ned and
versatile approximation method able to capture collective e�ects in liquids has led to the
development of a branch in its own right: the art of elaborating approximations leading to
correlations in �uids is almost as old as statistical mechanics itself [149, 180]. It is only in
the mid-eighties that Frisch, Rivier and Wyler [66] were able to devise a bona �de mean-
�eld approximation. The latter, that we reviewed in Sec.3.2, takes the form of a controlled
large dimensionality limit in which they could derive, among other thermodynamical prop-
erties, an exact equation of state for classical hard-spheres. The physical price to pay by
going to large space dimensions is heftily compensated by the mathematical gain: not only
the equation of state [66, 213] but also thermodynamic quantities, such as the entropy [64]
and even transport coe�cients inferred from the collision dynamics [47] can be determined
exactly. Perhaps more importantly, the greatest insight is to be found in the pair-correlation
function in that it, alone, controls the spatial organization of the �uid [65], and can thus be
used as an educated starting point for density functional approaches [48] (see [131] for a
recent overview).

The realization that classical in�nite-dimensional hard-spheres lent themselves to ana-
lytical treatment, especially regarding the determination of entropy, laid the ground for the
idea that they could also be used to investigate metastability issues (understood in terms
of free energy minima) [170, 172, 120]. They have thus become the workhorse of the the-
ory of jamming and of the static approach to glasses. More recent inroads into dynamical
behavior [99, 185, 136, 119] address relaxation properties, including with nonequilibrium
evolutions [2]. The associated Dynamical Mean Field Theory (DMFT) framework will be
the subject of the �rst section of this chapter. For some of these glassy-behavior-related
questions, the high-dimensionality comes with its own share of hotly debated issues as to
what exactly survives �nite dimensions [95].

A pivotal starting point common to all static approaches is the celebrated equilibrium
Boltzmann weight. In stark contrast, no such shortcut exists for the stationary properties
of active matter systems and it is thus no surprise that a many-body exactly solvable model
of particles interacting with pairwise forces has so far remained elusive. Understanding
collective behavior in active matter thus combines the hurdles of strongly correlated liquids
with those of nonequilibrium physics.

One of the remarkable properties of standard equilibrium �uids is the pairwise structure
of their N -body stationary distribution, i.e. the possibility to express it as a product over
all the pairs of particles. We stress that the question to know whether the former is true in
a many-body interacting system is a priori transverse to the, dynamical in nature, question
of being or not in equilibrium. In general, we say that a many-body distribution admits a
pairwise structure if there exists some functions g1(r) and g2(r) such that it can be written
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in the form

PN(r1, r2, . . . , rN) =
N∏

i=1

g1(ri)
N∏

i>j

g2(ri − rj) . (4.1)

If the latter holds, and whether or not the original system is in equilibrium, then their is a
direct mapping between its static properties and that of a standard equilibrium one.

Equation (4.1) is however expected not to hold in in active matter systems, thus mak-
ing their stationary state distribution genuinely di�erent from that of standard equilib-
rium �uids. We say that the system displays many-body interactions in the steady state.
Even though there is no known formula for the stationary distribution of interacting self-
propelled particle systems, the breaking of Eq. (4.1) can already be seen in its small τ ex-
pansion for AOUPs [60]. For the dynamics de�ned by Eq. (1.13) in the absence of external
potential together with Eq. (1.18), the stationary state distribution indeed writes,

−D lnPN(r1, . . . , rN) =
∑

i<j

[
U(ri − rj)− 2Dτ∇2

riU(ri − rj)
]

+
τ

2

∑

i

(∑

j 6=i
∇riU(ri − rj)

)2

+O(τ 2) .

(4.2)

The last term of the above formula generates 3-body interactions and breaks the structure
of Eq. (4.1). Several attempts have been made in the literature to describe the properties
of active �uids using approximate measures of the form Eq. (4.1) with well chosen e�ec-
tive pair potential [51, 141]. Such mappings however tend to work quantitatively or even
qualitatively only in the near-equilibrium regime [179]. In a recent work [202], Turci and
collaborators shed a new light on the importance of multibody interactions in self-propelled
particles system. In particular, they showed that a system described by the many-body dis-
tribution

PN(r1, . . . , rN) =
∏

i<j

g2(ri − rj) , (4.3)

where g2(r) is the stationary distribution of two ABPs interacting via a WCA potential, does
not experience phase separation whereas it is known that the original ABP system under-
goes MIPS at high enough activity. This is particularly interesting given the Lennard-Jones
like shape of ln g2. Lastly, we underline the fact that all the (static) thermodynamic proper-
ties of any system respecting Eq. (4.1) are known exactly in the limit of in�nite dimension
(provided the correct scalings are taken). It is not so in systems with multibody interactions
in the steady state. This will be one of the main concerns of this work.

In this chapter, our purpose is to show how working in in�nite dimension allows to
gain theoretical insights into the thermodynamic behavior of active matter systems and
particularly on the role of multibody interactions. Section 4.1 is the result of a collaboration
[176] with A. Manacorda and F. Zamponi. There, we �rst introduce the correct scalings of
the active dynamics in the in�nite dimensional limit. We then introduce the family of sticky
sphere potentials that generalize the hard sphere one by adding short-ranged attraction on
top of it. The low density thermodynamic properties of an in�nite dimensional system of
RTPs are then derived in the ballistic limit. Next, we study the active DMFT equations
in the same regime. We compute to the �rst order in ϕ̂ the di�erent dynamical kernels.
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We recover the above mentioned static results and obtain a formula for the Mean Square
Displacement (MSD). We show that at long times it is that of a free particle with the bare
self-propulsion replaced by the e�ective one.

In Sec. 4.2, we investigate the steady state behavior of in�nite dimensional active sys-
tems beyond the dilute limit. This part is based on the results of a collaboration with G.
Lozano [175]. The starting point is the BBGKY hierarchy of correlation functions Eq.(3.12)
that we showed in Sec.3.2.7 to be amenable to an exact closure in equilibrium systems. We
originally thought the resummation scheme of [175] was exact but we now know that it is
not the case as it only partially takes into account the e�ect of multibody interactions in
steady state. We present here this resummation scheme and clearly highlight which con-
tributions are kept and which are neglected. I would like to thank here G. Biroli, A. Man-
acorda, C. Liu and F. Zamponi for extremely insightful discussions regarding these issues.
The work of [175] on active hard spheres is here extended to the family of sticky spheres.
The result is the description of the local structure of n-point correlation functions that is
shown to be that of an equilibrium �uid with density dependent interaction pair potential.
From this we derive the e�ective self-propulsion v(ϕ̂). While that of hard spheres decays
linearly with ϕ̂ as already shown in [175] and consistently with numerical observations
of �nite dimensional systems [196], we show that the latter does not hold in general. We
also introduce the concept of e�ective amplitude of potential interactions µ(ϕ̂). Both the
e�ective self-propulsion and the e�ective amplitude of potential interactions are found to
vanish at the same �nite crowding density ϕ̂cr. Interestingly, we remark that the predicted
density coincides with the dynamic glass transition one of an equilibrium colloidal system
with a density dependent pair potential that reproduces the local structure of the active
�uid.

Lastly, in Sec. 4.3, we conclude our investigation on the behavior of in�nite dimensional
active systems and the role of multibody interactions. We study the Uni�ed Colored Noise
Approximation (UCNA) of the AOUPs dynamics for which theN -body stationary distribu-
tion function is known and exhibits multibody interactions. Using a mapping to a system
with pairwise structure, we are able to predict the density dependence of the radial distribu-
tion function as well as the phase behavior of the UCNA. The latter displays two regions of
phase coexistence for which a simple two-body approximation of the distribution is unable
to account for.
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Contributions

Section 4.1

• introduction of the family of sticky sphere potentials,

• solution of the two-body problem in the ballistic limit and computation of
the low density pair-correlation function, e�ective self-propulsion, mechan-
ical pressure,

• �rst order in density of the dynamical kernels of the active DMFT equations,

• computation of the MSD that at long-times equals that of a free particle with
v0 replaced by v(ϕ̂).

Section 4.2

• failure of the Kirkwood approximation at large d,

• approximate resummation scheme of the hierarchy of correlation functions in
in�nite dimensional RTPs systems in the ballistic limit,

• prediction for the �uid structure and correspondence with that of an equilib-
rium �uid with density dependent pair potential,

• computation of the e�ective velocity and e�ective amplitude of pair interac-
tions,

• puzzling correspondence between the crowding density ϕ̂cr and the dynamical
glass transition one ϕ̂d of the equivalent equilibrium �uid.

Section 4.3

• proof of the absence of phase transition in the two-body approximation of the
in�nite dimensional UCNA,

• mapping of the UCNA to a system with pairwise structure,

• predictions for the �uid structure and correspondence with that of an equilib-
rium �uid with density dependent interaction potential,

• phase diagram of the UCNA.

4.1 Sticky hard spheres in the dilute and ballistic limit

We start with this section our study of in�nite dimensional systems made of interacting
self-propelled particles with a particular emphasis on their dynamical properties within
the DMFT framework. First, we specify the scalings of the model parameters with the
dimension. These are the scalings we will also use in Sec. 4.2. We then introduce a family of
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potentials called the sticky sphere potentials that generalize the hard sphere case of Sec. 2.3
by adding an attractive well to the repulsive hard core. In the fashion of Sections 2.3 and
3.1, the stationary state of the two body problem is computed in the ballistic limit and
low density radial distribution function, e�ective self-propulsion and mechanical pressure
are derived. The DFMT equations for the dynamics of the two-particle process are next
studied in the low density/high persistence regime. The relaxation to the stationary state
is studied and the stationary distribution function previously derived is recovered. The
dynamical kernels of the DMFT framework are then computed to �rst order in the density:
this constitutes the basis of a more systematic study of the active dynamics. In particular,
this allows us to show that after the �rst density iteration, the long time limit of the MSD
is given by that of a free particle with the bare velocity v0 replaced by the e�ective self-
propulsion v(ϕ̂), as observed numerically in [196] for 2 and 3 dimensional ABPs in a large
density range.

4.1.1 De�nition of the model and in�nite dimensional scalings

We consider the dynamics of N interacting d-dimensional self-propelled particles with
equations of motion that follow Eq. (1.13),

ζ ṙi(t) = vi(t)−
∑

j(6=i)
∇riU (ri(t)− rj(t)) . (4.4)

In Eq.(4.4), motion is induced by (i) a self-propulsion force vi(t) and (ii) pairwise conser-
vative forces deriving from the potential U (ri − rj). The latter is taken radially symmet-
ric, U (r) = U(r) with r = |r|. There exist di�erent descriptions of the driving force,
each of them corresponding to a particular model of self-propelled particles. In the fol-
lowing, we choose to work with run-and-tumble particles (RTPs) in which case the ac-
tive force reads vi(t) = v0ui(t) with ui(t) a unit vector randomly and uniformly reshuf-
�ed on the (d − 1)-dimensional unit sphere with rate τ−1, thus yielding

〈
uµi (t)uνj (s)

〉
=

δijδ
µν exp (−|t− s|/τ)/d. Note however that, as shown in [175] and reviewed in Sec. 3.1,

the three standard models of self-propelled particles, i.e. RTPs, active Brownian particles
and active Ornstein-Ulhenbeck particles, are equivalent in the limit where the space dimen-
sion d is sent to in�nity and the persistence time is large. In the present section, we study
the dynamics Eq. (4.4) at low densities in the limit d → ∞. Following our earlier study of
in�nite-dimensional equilibrium �uids in Sec. 3.2, we consider �rst the following scalings,

• the pair potential is assumed to decay over a short length scale as limd→∞ U(r) =

Û(h) with h = d(r/σ−1). The length scale σ can be viewed as the particle diameter;

• the number density ρ is such that each particle interacts with O(d) other particles,
i.e. ϕ̂ = ρVd(σ)/d is kept �nite with Vd(σ) the volume of the d-dimensional ball of
radius σ.

The active dynamics parameters also have to be scaled in the large d limit [2, 175, 176]. This
is what we discuss now. As a consequence of the above mentioned scalings, we have

|∇riU(ri − rj)| ∼ d , (4.5)
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so that

∇riU(ri − rj) · ui ∼ d1/2 , (4.6)

with the additional d−1/2 factor between the latter and the former brought about by the
scalar product between ui and r̂ij . Hence we expect the projection of the total potential
force along ui to scale as,

∑

j(6=i)
∇riU(ri − rj) · ui ∼ d3/2 , (4.7)

because the above sum contains O(d) terms. The projection of the total potential force on
the (d− 1)-dimensional hyperplane orthogonal to ui is also expected to scale in the same
way ∣∣∣∣∣∣

∑

j( 6=i)
∇⊥riU(ri − rj)

∣∣∣∣∣∣
∼ d3/2 . (4.8)

It is indeed the sum O(d) vectors of norm O(d) that are expected to be isotropically dis-
tributed and weakly correlated in the large d limit (remember that if both j and k interact
with i then it becomes extremely unlikely that j and k also interact together as d grows) so
that by central limit theorem-type arguments the above mentionned scaling is recovered.
Thus, we propose the following scaling for the self-propulsion speed v0,

• the norm of the active drive is rescaled as v0 = (
√

2d3/2/σ)v̂0. In Eq. (4.4), this equates
the scaling of the norms of the conservative force and of the active force;

We �nally note that the scaling form of the potential suggests that the relevant time scale of
the problem is that over which particle i move by an amount O(1/d) along each direction
r̂ij [130, 2, 136]. Thus,

• the friction coe�cient is rescaled as ζ = (2d2/σ2)ζ̂ . In this scaling, the variations of
the rescaled separation h between two particles over �nite time scales are O(1).

• the times t and τ are left unchanged.

Note that in order to maintain a competition between activity and repulsive pairwise
interactions in the equation of state, we will sometimes work in the ultraballistic scaling
τ = dτ̂ . We also remark that in this settings the equilibrium dynamics can be recovered in
the limit τ → 0 by setting v̂2

0 = ζ̂T/τ . With this prescription, the active force becomes a
thermal noise at temperature T in the limit of vanishing persistence.

4.1.2 Sticky spheres: stationary state properties

The two-body problem in the in�nite dimensional limit:

We start by addressing the dynamics of two interacting self-propelled particles. The inter-
action is carried through a spherically symmetric potential U and both particles are subject
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to an external active drive. Following Eq. (4.4), their equations of motion read

ζ ṙ1(t) = v0u1(t)−∇r1U (r1(t)− r2(t)) ,

ζ ṙ2(t) = v0u2(t)−∇r2U (r2(t)− r1(t)) ,
(4.9)

with u1(t) and u2(t) two independent run-and-tumble noises. We then introduce r =
r2 − r1, the relative separation, and P (r,u1,u2), the stationary state probability density
associated to the process in Eq. (4.9). The latter obeys the following integro-di�erential
equation

− v0 (u2 − u1) ·∇rP + 2∇r · (P∇rV (r))

+
ζ

τp

[∫
du′

Ωd

P (r,u′,u2) +

∫
du′

Ωd

P (r,u1,u′)− 2P (r,u1,u2)

]
= 0 .

(4.10)

Taking advantage of the rotational symmetry of P we introduce the variables

r = |r| ,
w1 = (u1 · r) /r ,
w2 = (u2 · r) /r ,
z = u1 · u2 ,

(4.11)

the use of which allows us to rewrite to Fokker-Planck equation in terms of four (instead
of 3d) coordinates as

0 =− v0 (w2 − w1) ∂rP −
v0

r

[
(1 + w1w2 − z) (∂w2 − ∂w1)P −

(
w2

2 ∂w2 − w2
1 ∂w1

)
P
]

+
2

rd−1
∂r
(
rd−1U ′(r)P

)
+
ζ

τp

[
Ωd−2

Ωd

1√
1− w2

2

∫ 1

−1

dw′1

∫ w′1w2+
√

1−w2
2

√
1−w′21

w′1w2−
√

1−w2
2

√
1−w′21

dz′ × . . .

×P (r, w′1, w2, z
′)

(
1− w′21 −

z′2 + w′21 w
2
2 − 2z′w′1w2

1− w2
2

)d−4
2

+
Ωd−2

Ωd

1√
1− w2

1

× . . .

×
∫ 1

−1

dw′2

∫ w1w′2+
√

1−w′22
√

1−w2
1

w1w′2−
√

1−w′22
√

1−w2
1

dz′P (r, w1, w
′
2, z
′)

(
1− w′22 −

z′2 + w′22 w
2
1 − 2z′w′2w1

1− w2
1

)d−4
2

− 2P (r, w1, w2, z)

]
.

(4.12)

The limit of in�nite dimension d→∞ is then taken in Eq. (4.12) with:

r = σ (1 + h/d) ,

w1 → w1/
√
d ,

w2 → w2/
√
d ,

z → z/
√
d .

(4.13)
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while keepingh, and the rede�nedw1,w2, z �xed. The in�nite dimensional limit of Eq. (4.12)
is obtained to leading order in d as:

− v̂0√
2

(w2 − w1) ∂hP −
v̂0√

2
(∂w2 − ∂w1)P + e−h∂h

(
eh
Û ′(h)

σ
P

)

+
ζ̂

τp

[∫ +∞

−∞

dw′1 dz′

2π
exp

(
−w

′2
1

2
− z′2

2

)
P (h,w′1, w2, z

′)

+

∫ +∞

−∞

dw′2 dz′

2π
exp

(
−w

′2
2

2
− z′2

2

)
P (h,w1, w

′
2, z
′)− 2P (h,w1, w2, z)

]
= 0 .

(4.14)

It appears from the above equation that the probability density becomes independent of z
in this scaling.

Analytical solution with in�nite persistence

Equation (4.14) can be solved analytically for certain classes of potentials in the ballistic
limit τ → ∞. Beside providing nice analytical simpli�cations, this limit is conjectured to
be of particular interest regarding the phase behavior of macroscopic systems of interacting
active particles, see [196] for a discussion in d = 2 and d = 3 and [175] for a discussion in
d→∞. At τ →∞, only the relative speed w = (w2 − w1) /

√
2 enters the game and

− v̂0 (w∂hP + ∂wP ) + e−h∂h

(
eh
Û ′(h)

σ
P

)
= 0 (4.15)

with P (h → ∞, w) = 1 as a boundary condition. The class of potentials we work with
in the following is that of sticky-sphere potentials. These potentials have hard-sphere re-
pulsion at h < 0 while displaying an in�nitely short ranged attractive well at h = 0+ and
are vanishing at h > 0. Such potentials are similar in spirit to the Baxter potential some-
times used as a model for passive colloids with short ranged attraction [11]. However, we
make use of a slightly di�erent mathematical construction for these sticky-sphere poten-
tials. Indeed, the pairwise force, when attractive, must always be �nite for the stationary
state to be well-de�ned. Were this not to be true, then the two particles whose dynamics is
given in Eq. (4.9) would never separate after a collision, the driving forces being unable to
counterbalance the attractive force created by the potential. The sticky sphere potential is
constructed as follows:

Û(h) =





v̂0w0

(
λ
2
h2 + h− 1

2λ

)
, h < 0 ,

v̂0w0

(
−λ

2
h2 + h− 1

2λ

)
, 0 < h < 1/λ ,

0 , h > 1/λ ,

(4.16)

in the limit λ→∞, where w0 is a real positive parameter and 2v̂0w0 is the maximal attrac-
tive force between two particles. The results shown in the following are however indepen-
dent of the precise procedure used to construct the sticky-sphere potential as the limit of a
regular one. In general, w0 is de�ned as

w0 = max
h

(
Û ′(h)

v̂0

)
. (4.17)
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Concretely, when colliding, the two spheres skid one onto each other until they are free to
go. In the hard-sphere case, this occurs whenever the relative driving force is orthogonal
to the relative separation, i.e. at w = 0, see Fig. 2.6. In the sticky-sphere case, they keep
skidding and only detach at w = w0, when the projection of the relative driving on the
separation direction 2 v̂0w compensates the maximal attractive force, as depicted in Fig. 4.1.
Finding the stationary distribution in that case amounts at generalizing the computation we

r̂ 1
2

u
u

Figure 4.1: A collision between two active sticky hard spheres labeled 1 and 2 in the ref-
erence frame where particle labeled 1 is held �xed. Particle 2 with incoming relative self-
propulsion u = u2 − u1 hits particle 1 (at the magenta position) and then skids around. It
eventually takes o� at the yellow position where the self-propulsion compensates the at-
tractive interaction between the two spheres, i.e. r̂ ·u =

√
2w0/

√
d. The light blue position

is where the relative self-propulsion is tangent to the separation between the two spheres
and marks the end of the collision in the hard sphere case w0 = 0.

made in Sec. 2.3 in the hard sphere case. As shown in Appendix B.1, in the limit λ → ∞,
the stationary probability distribution splits into a bulk part at h > 0 and a delta peak
accumulation at h = 0,

P (h,w) = Pb(h,w)Θ(h) + Γ(w)δ(h) , (4.18)

where Θ(h) is the Heaviside step function and δ(h) is a Dirac delta, with

w∂hPb + ∂wPb = 0 , (4.19)

and

Γ′(w)− wΓ(w) = −wPb(0, w) with Γ(w > w0) = 0 . (4.20)

The stationary distribution function is shown to be given by (see Appendix B.1 for details
of the derivation)

Pb(h,w) = Θ(h)

[
1−Θ(w)Θ

(
w2

2
− h
)

+ Θ(w)e
w2

0
2 δ

(
h− w2

2
+
w2

0

2

)]
(4.21)

and

Γ(w) = Θ(−w) + Θ(w)Θ(w0 − w)e
w2

2 . (4.22)

As discussed in the Appendix B.1, the 2h − w2 = cst parabolas correspond to the de-
terministic trajectories (excluding collision events) in the h,w plane. In this plane, the
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{h > 0, w > 0 , w2 − 2h > 0} domain is made of trajectories emanating from a collision
event. Equation (4.21) thus states that the probability to �nd the system in this region is
concentrated on the w2 − 2h = w2

0 branch: all trajectories with a collision collapse on this
line when the two particles detach. As w0 → 0 (this limit being taken after the λ → ∞
one), one obtains the ballistic limit of the stationary probability distribution of two active
hard spheres. The marginal in space probability distribution can then be obtained from
equations (4.21)-(4.22) as,

P (h) =

∫ +∞

−∞

dw1dw2

2π
exp

(
−w

2
1

2
− w2

2

2

)
P

(
h,w =

w2 − w1√
2

)
,

=

∫ +∞

−∞

dw√
2π
e−

w2

2 P (h,w) ,

= Θ(h)

[
1

2

(
1 + erf

(√
h
))

+
e−h√

2π (2h+ w2
0)

]
+

(
1

2
+

w0√
2π

)
δ(h) .

(4.23)

The distribution in Eq. (4.23) clearly shows an activity induced attraction between the two
particles. The w0 parameter of the sticky sphere potential allows to tune the amplitude
of the attractive delta peak at contact. We remark that the purely repulsive case w0 = 0
displays a h−1/2 divergence of its bulk part while the latter has �nite value at h = 0 in
the attractive w0 > 0 case. The attractive force monotonically depletes the small h region
favoring adhesion at h = 0, as shown by the delta peak amplitude increasing with w0.

Thermodynamic properties in the dilute limit

We return to the above mentioned generalN -body dynamics Eq. (4.4). Deriving the macro-
scopic properties of the system, such as its two-point function, directly from the set of equa-
tions in Eq. (4.4) is in general a formidable task. Here we use the results obtained above to
describe the thermodynamic properties of the stationary state of the process in Eq. (4.4) in
the dilute limit. In the limits ϕ̂ → 0 and τ → ∞, the two point function of the system is
given by that of the two-particle one,

g (r,u1; r′,u2) = P (h,w) , (4.24)

where the distribution P was previously derived in Eq. (4.18) with h = d(|r−r′|/σ−1) and
w =

√
d (u2 − u1) · (r′ − r)/(

√
2|r− r′|) . From Eq. (4.24), we compute the two important

quantities introduced in Sec. 3.1: the e�ective self-propulsion v(ϕ̂) and the mechanical
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pressure p(ϕ̂). From Eq. (3.15), the e�ective self-propulsion writes to �rst order in ϕ̂

v(ϕ̂) = v0 + ρ

∫
dr

du′

Ωd

g(0,u; r,u′)U ′(r)r̂ · u

= v0 + d3/2ϕ̂

∫
dh eh

dw1dw2

2π
exp

(
−w

2
1

2
− w2

2

2

)
P

(
h,w =

w2 − w1√
2

)
Û ′(h)

σ
w1

= v0

(
1 +

ϕ̂√
2

∫
dw1dw2

2π
exp

(
−w

2
1

2
− w2

2

2

)
Γ

(
w =

w2 − w1√
2

)
w2 − w1√

2
w1

)

= v0

(
1− ϕ̂

2

∫
dw√
2π

exp

(
−w

2

2

)
Γ (w)w2

)

= v0

(
1− ϕ̂

4

(
1 +

√
2w3

0

3
√
π

))
,

(4.25)

from which it appears clearly that at small density the slow-down of the e�ective self-
propulsion induced by collisions increases with the stickiness of the potential. In order to
go from the second to the third line of Eq. (4.25), we have used the regularization of the
product PÛ ′(h) in the hard λ→∞ limit:

lim
λ→∞

P (h,w)
Û ′(h)

σ
= v̂0w Γ(w) δ(h) . (4.26)

A proof of Eq. (4.26) is given in Appendix B.1. Next we compute the equation of state for
the mechanical pressure associated to Eq. (4.4). For a generic ζ (as opposed to Eq. (3.16)
that was given for ζ = 1), the expression reads

p(ϕ̂) = ρ
v2

0τ

dζ

v(ϕ̂)

v0

− ρ2

2d

∫
dr

du1

Ωd

du2

Ωd

g (0,u; r,u′)U ′(r)r . (4.27)

which indeed reduces to Eq. (3.16) at ζ = 1. Within the considered scalings,

ρ2

2d

∫
dr

du1

Ωd

du2

Ωd

g (0,u; r,u′)V ′(r)r ,

= dρ
ϕ̂

2
σv̂0

∫
dw1√

2π

dw2√
2π

exp
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−w

2
1

2
− w2

2

2

)
Γ

(
w =

w2 − w1√
2

)
w

= dρ
ϕ̂

2
σv̂0

∫
dw√
2π

exp

(
−w

2

2

)
Γ (w)w

= − dρϕ̂
4

√
2σv̂0√
π

(
1− w2

0

2

)
.

(4.28)

Thus, up to second order in ϕ̂, we obtain the equation of state for the mechanical pressure
in the presence of attractive attraction between the particles

(
Ωdσ

d

d2

)
p(ϕ̂)

d
= ϕ̂

v̂2
0 τ̂p

ζ̂

[
1− ϕ̂

4

(
1 +

√
2w3

0

3
√
π

)]
+
ϕ̂2

4

√
2σv̂0√
π

(
1− w2

0

2

)
. (4.29)
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Note that in order for the two terms in the above expression to have the same scaling in d,
we had to rescale the persistence time consistently with the ballistic hypothesis τ � 1 as
τ = dτ̂ . We denote this scaling the ultraballistic one. For τ = O(1), the equation of state is
indeed dominated by the second, equilibrium-like, term as we explained in the hard sphere
case Eq. (3.47). Note also the manifestly destabilizing role of the sticky-sphere parameter
w0 on the homogeneous state suggested by this low density computation.
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Figure 4.2: Left: pair distribution function gs(h) = P (h) vs h in the steady state for w0 = 0

(purely repulsive case, black dashed line) and w0 = 10−3, 10−2, . . . , 102 (colored lines),
Eq. (4.23). The repulsive case displays the h−1/2 divergence, while the attractive w0 > 0

curves have a �nite limit at h = 0; the attractive force monotonically depletes the small h
region favoring adhesion at h = 0, as shown by the delta peak amplitude increasing with
w0. Right: Pressure vs rescaled density as from Eq. (4.29), with ζ̂ = τ̂p = v̂0 = σ = 1.
Its behavior is non-monotonic and the decreasing region p′(ϕ̂) < 0 is a possible signal of
motility-induced phase separation. The pressure becomes negative after a threshold value
of ϕ̂, signaling the unphysical behavior of the computed result.

4.1.3 Results from dynamical mean-�eld theory

Microscopic dynamics and in�nite-dimensional limit

The general DMFT of in�nite-dimensional particle systems interacting through pair poten-
tials and subject to external drivings has been derived in [2]. Here we address the dynamics
of active particles introduced in Eq. (4.4). The dimensional scaling of self-propulsion, vis-
cosity and density follows the prescriptions introduced in Sec. 4.1.1.

The DMFT framework allows one to describe the N -body, d-dimensional process in
Eq. (4.4) by means of a two-body scalar process. It is a remarkable feature of the large
dimensional limit that extends to the realm of the dynamics the results presented in Sec. 3.2
in the statics. Let us now brie�y sketch the idea behind these equations [169]. Consider an
arbitrary particle labeled 0. The force it experiences, beside the one-body self-propulsion
one, is a sum over the many pairwise forces exerted by its neighbors. Conditioned on the
knowledge of the trajectory of particle 0 from time 0 to time t, the latter can be seen as a
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function of all the noises and initial positions of the other particles i = 1, . . . , N . It can
thus be decomposed as the sum of its average plus a zero mean �uctuating part. On the
one hand, because of the small displacement |δr0(t)| ∼ d−1/2 of particle 0 over time scales
of order 1, the average part can be written to leading order in linear response theory and
takes the form of a retarded friction. On the other hand, the �uctuating part is obtained
as the sum over many weakly correlated pairwise forces and thus becomes Gaussian in
the large d limit. Both the induced friction kernel and noise correlation function depend
on the statistical properties of U(r0 − ri) for any i = 1, . . . , N , i.e. on the properties
of the two-body dynamics. The latter can be analyzed by repeating the same procedure
while isolating two arbitrary particles. This closes the system by yielding self-consistent
equations for the friction kernel and noise correlations. In [136], these equations have
actually been originally derived in equilibrium using the dynamical partition function as a
starting point. Its form indeed allows to adapt, in the space of trajectories instead of the
con�guration space, the analysis of Sec. 3.2. Alternative cavity-based proofs whose spirit
was given in the above discussion have later been obtained [2, 130].

More precisely, it is known that when d → ∞ the two-particle process can be deter-
mined self-consistently by analyzing the behavior of the rescaled inter-particle gap, i.e.

h(t) = h0 + y(t) + ∆r(t) ≈ d

(
r(t)

σ
− 1

)
, (4.30)

where r(t) is the relative distance between two reference particles (say i and j), y(t) =
(d/σ) r̂0 · (r(t)− r0) is the rescaled projection of the relative displacement along the initial
relative direction, and ∆r(t) = (d/σ2) 〈|ri(t)− ri(0)|2〉 is the mean-square displacement
(MSD) contribution given by the d− 1 transverse components. The equation of motion for
y(t) can be shown to take the following form:

ζ̂ ẏ(t) = −κ(t)y(t) +

∫ t

0

dsMR(t, s) y(s)− Û ′(h0 + y(t) + ∆r(t)) + Ξ(t) , y(0) = 0 ,

〈Ξ(t)〉 = 0 , 〈Ξ(t)Ξ(s)〉 = GC(t− s) +MC(t, s) , GC(t) = v̂2
0e
−|t|/τ .

(4.31)

The colored noise Ξ(t) has two contributions: (i) the active self-propulsion with stationary
time correlations GC(t − s) and (ii) the kernel MC(t, s), accounting for the force-force
correlation given by pairwise interactions. The term−Û ′(h(t)) is the rescaled two-particle
interaction force. Finally, as discussed above, DMFT also introduces the instantaneous and
retarded response kernels, respectively κ(t) andMR(t, s), to describe the reaction of the
N -body system on the two-particle process. The response and correlation kernels κ(t),
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MR(t, s) andMC(t, s) need to be determined self-consistently with the de�nitions

κ(t) =
ϕ̂

2

∫ ∞

−∞
dh0 e

h0g0(h0)
〈
Û ′′(h(t)) + Û ′(h(t))

〉
h
,

MC(t, t′) =
ϕ̂

2

∫ ∞

−∞
dh0 e

h0g0(h0)〈Û ′(h(t))Û ′(h(t′))〉h ,

MR(t, t′) =
ϕ̂

2

∫ ∞

−∞
dh0 e

h0g0(h0)
δ〈Û ′(h(t))〉h,P

δP(t′)

∣∣∣∣∣
P=0

=
ϕ̂

2

∫ ∞

−∞
dh0 e

h0g0(h0)〈Û ′′(h(t))H(t, s)〉h ,

(4.32)

where g0(h0) is the initial gap distribution function, the perturbation P(t) acts in the pair-
wise interaction as Û ′(h0 + y(t) + ∆r(t))→ Û ′(h0 + y(t) + ∆r(t)− P(t)), and the �uc-
tuating response is de�ned as H(t, s) = δh(t)/δP(s)|P=0; its evolution is given by

ζ̂
∂

∂t
H(t, t′) = −κ(t)H(t, t′)− Û ′′(h(t)) [H(t, t′)− δ(t− t′)] +

∫ t

t′
dsMR(t, s)H(s, t′) .

(4.33)
The system is not yet closed, because of the MSD contribution given by ∆r(t) in Eq. (4.31);
the latter can be determined through the dynamical correlation and response. We introduce

C(t, t′) =
d

N

∑

i

〈[ri(t)− ri(0)] · [ri (t′)− ri(0)]〉 , (4.34)

the rescaled two-times correlation function and

R (t, t′) =
d

N

∑

i,µ

〈
δrµi (t)

δλµi (t′)

〉
(4.35)

the rescaled response function of the one-body process. The perturbation acts in a standard
way as ζṙµi (t) = . . .→ ζṙµi (t) = · · ·+ λµi (t). The correlation and response function obeys,

ζ̂
∂

∂t
C(t, t′) =2ζ̂TR(t′, t)− κ(t)C(t, t′) +

∫ t

0

dsMR(t, s)C(s, t′)

+

∫ t′

0

ds [GC(t− s) +MC(t, s)]R(t′, s) ,

ζ̂
∂

∂t
R(t, t′) =

δ(t− t′)
2

− κ(t)R(t, t′) +

∫ t

t′
dsMR(t, s)R(s, t′) .

(4.36)

By de�nition, one has ∆r(t) = C(t, t), and the dynamical equations are at this stage closed.
The evolution equation for the MSD ∆(t, t′) = d

σ2 〈|ri(t)− ri(t′)|2〉 and ∆r(t) ≡ ∆(t, 0)

89



Chapter 4

therefore read

ζ̂
∂

∂t
∆(t, t′) =− κ(t) [∆(t, t′) + ∆r(t)−∆r(t

′)]− 4ζ̂T R(t′, t)

+

∫ t

0

dsMR(t, s) [∆r(t)−∆r(t
′) + ∆(s, t′)−∆(s, t)]

+ 2

∫ max(t,t′)

0

ds [GC(t− s) +MC(t, s)] [R(t, s)−R(t′, s)] ,

ζ̂∆̇r(t) =− 2κ(t)∆r(t) +

∫ t

0

dsMR(t, s) [∆r(t) + ∆r(s)−∆(s, t)]

+ 2

∫ t

0

ds [GC(t− s) +MC(t, s)]R(t, s) .

(4.37)

Dilute solution with in�nite persistence

The analytical solution of the problem determined by Eqs. (4.31-4.36) is currently out of
reach. In the equilibrium case, these equations simplify thanks to �uctuation-dissipation
relations and a numerical solution has been found [138]. In the present case, a numerical
solution must deal with strong technical di�culties, the main one being the sampling e�-
ciency at long times: indeed, particles with in�nite persistence time eventually collide with
a rate that is exponentially decaying in time. Therefore, the amount of trajectories needed
to compute the dynamical kernels at long time is exponentially high. A possible solution
may involve the generation of biased trajectories to increase e�ciency, but its design goes
beyond the scope of this article.

It is however possible to derive an analytical solution in the dilute limit: indeed, the
implicit equations (4.32) for the kernels depend on the density only through a global mul-
tiplicative coe�cient. Therefore, a solution for e.g. the instantaneous response κ(t) reads

κ(t) = ϕ̂F [κ,MR,MC ] (t) . (4.38)

The self-consistent kernels are given by the �xed points of Eq. (4.38). An iterative solution
can be found assuming that the low-density limit is continuous and that the series

κ(t) = ϕ̂ κ(1)(t) + ϕ̂2κ(2)(t) + . . . . (4.39)

converges.

When ϕ̂ = 0, the kernels are trivially vanishing because no interaction occurs. In
the dilute limit ϕ̂ � 1, the solution can be approximated by the �rst-order expansion
in Eq. (4.39). The latter can be analytically computed in the in�nite persistence time limit
τ →∞: indeed, in that case the active force reduces to a constant driving and, in absence of
dynamical kernels, the trajectories in Eq. (4.31) are fully determined by the self-propulsion
Ξ(t) ≡ Ξ0 drawn at t = 0.

The solution of the �uctuating equations (4.31) and (4.33) can be then computed impos-
ing κ(t) =MR(t, t′) =MC(t, t′) = 0 and plugging the trajectories h(t) into Eqs. (4.32) to
compute the �rst-order kernels.
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Analytical solution in the dilute limit: trajectories and pair distribution function

In the case of vanishing kernels, the response and correlation read

R(t, t′) =
1

2ζ̂
θ(t− t′) ,

C(t, t′) =
v̂2

0

2ζ̂2
t t′ ⇒ ∆(t, t′) =

v̂2
0

2ζ̂2
(t− t′)2 .

(4.40)

This result depends on a natural time scale τ0 = ζ̂/v̂0, which represents the typical duration
of a collision, as it is the time needed to traverse a distance σ/d at speed v0. This time scale
must not be confused with τ , which we recall to be the persistence time of the active self-
propulsion. In the following, we will set ζ̂ = v̂0 = 1, setting τ0 as unit of time and v̂0 as unit
of energy; the dimensional coe�cients will be reinstated in the �nal results. The solution
in Eq. (4.40) leads to the dynamical equation for h(t) = h0 + y(t) + ∆r(t)

ḣ(t) = −Û ′(h(t)) + ξ0 + t , h(0) = h0

〈ξ0〉 = 0 , 〈ξ2
0〉 = 1 ,

(4.41)

having now called Ξ(t) = Ξ0 = v̂0 ξ0. The equation for the �uctuating response H(t, t′)
now reads

∂

∂t
H(t, t′) = −Û ′′(h(t)) [H(t, t′)− δ(t− t′)] . (4.42)

The last equations must be solved with an appropriate choice of the potential. We consider
a sticky-sphere potential as de�ned in Eq. (4.16), always taking v̂0 = 1, and will study the
dynamics in the same limit with λ → ∞ corresponding to a hard core and an in�nitely
narrow attractive region, with a constant adhesive force when h = 0.

Our goal is to compute the pair distribution function and the dynamical kernels based
on the dynamical equations above. The �rst one is given by [2]

g(h, t) = e−h
∫

dh0 g0(h0) eh0 〈δ(h(t)− h)〉h0
, (4.43)

where 〈. . .〉h0
refers to an average over the trajectory realizations conditioned to the initial

condition h(0) = h0. In our settings, this average is equivalent to the average over the uni-
tary normal variable ξ0. The pair distribution evolution depends on the initial distribution
g0(h0); however, the steady state limit must not depend on its choice, so we choose to work
with g0(h0) = θ(h0 − 1/λ), so that the particles are not interacting at the initial time.

Given these premises, the pair distribution function can be directly computed in the
hard-sphere limit. Indeed, when λ → ∞, the particles are unable to overlap at h < 0,
and feel a �nite attractive force with strength w0 when h = 0. The trajectories can be
then divided into external and colliding ones. The former simply follow a ballistic motion
with initial velocity ξ0 and unitary acceleration; the latter are divided in three zones: (i) a
ballistic motion for t < t1, being t1 the starting time of the collision; (ii) the sticky collision,
i.e. h(t) = 0 for t1 < t < t2, being t2 the time when the particle leaves the barrier; (iii) a
ballistic motion for t > t2. Namely,

h(t) = h0 + ξ0 t+
1

2
t2 for external trajectories, (4.44)
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and

h(t) =





h0 + ξ0 t+ 1
2
t2 t < t1 = −ξ0 −

√
ξ2

0 − 2h0

0 t1 < t < t2 = −ξ0 + w0

1
2

[(t+ ξ0)2 − w2
0] t > t2

for colliding trajectories.

(4.45)
At any time t, h(t) is determined by the values of ξ0 and h0; the trajectories at contact with
the barrier will contribute to the delta peak in h = 0, while the trajectories with h > 0 will
give the regular part of the pair distribution function. Injecting the solution above into the
equation for g(h, t) one has the time-dependent solution

g(h, t) = G(t) δ(h) + gr(h, t) ,

G(t) =

{
t√
2π

for t < w0

1
2

+ w0√
2π
− 1

2
erfc t−w0√

2
for t > w0

,

gr(h, t) =





1
2

(
1 + erf

√
h
)

+ e−h√
2π(2h+w2

0)

[
1− e−

1
2

(
t−
√

2h+w2
0

)2
]

for 0 < h <
t2−w2

0

2
,

1
2

(
1 + erf

√
h
)

for t2−w2
0

2
< h < t2

2
,

1
2

[
1 + erf

(
2h+t2

2
√

2 t

)]
for h > t2

2
,

(4.46)

leading to the steady state limit for t→∞:

gs(h) = Θ(h)

[
1

2

(
1 + erf

√
h
)

+
e−h√

2π(2h+ w2
0)

]
+

(
1

2
+

w0√
2π

)
δ(h) . (4.47)

This result is equivalent to Eq. (4.23) in the steady state, and adds new information on
the transient behavior of the pair distribution function. In particular, the delta peak emerges
continuously with time and has a singular behavior at t = w0, exactly when the particles
can start to detach after a collision.

Dynamical kernels

The computation of dynamical kernels requires the evaluation of the potential and its
derivatives, and thus cannot be performed in the hard limit λ → ∞, since in that case
all these terms are singular. We then need to solve the equations of motion for the regu-
lar potential in Eq. (4.16). Those can be solved by parts for three interaction scenarios: (i)
the external case h(t) > 1/λ for all t, (ii) the colliding case h(t) < 0 at some t and (iii)
an intermediate, tangential case for which there exists h(t) < 1/λ but h(t) > 0 at any
t, which means that the particles enter the mutual attraction region but never get to the
repulsive core. This case disappears in the hard potential limit, where the width of the at-
tractive region vanishes, but must be nevertheless accounted for in the course of the kernel
computation.

The details of the computation are reported in Appendix B.2.1. As can be foreseen from
Eqs. (4.32) the response kernels κ(t) andMR(t, s) are divergent in the hard-sphere limit;
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Figure 4.3: Left: the regular part of the pair distribution function gr(h, t) vs h at several
times (see key), given by Eq. (4.46) with w0 = 1. The small-gap region h � 1 is rapidly
depleted by means of adhesive collisions. When t > w0, the self-propulsion overcomes the
attractive force, the particles leave the adhesive boundary and the small h region becomes
populated again. Right: the delta peak amplitude G(t) vs t for w0 = 0 (purely repulsive
case, black dashed line) and w0 = 10−3, 10−2, . . . , 102 (colored lines). The linear growth at
short times is followed by a steady state at longer times, where G(t)→ 1/2 + w0/

√
2π.

however, their divergences compensate in that limit, as shown in Appendix B.2.3. We also
argue that in the hard-sphere limit the repulsive interactions give rise to a short-ranged
memory kernelMR(t, s): as shown in Appendix B.2.2, the �uctuating response vanishes
over a time scale proportional to λ−1 and therefore only the near past of a dynamical vari-
able contributes to the response term. The integrated response can be then expanded as
∫ t

0

dsMR(t, s) f(s) =

∫ t

0

dsMR(t, s)

[
f(t)− ḟ(t)(t− s) +

1

2
f̈(t)(t− s)2 + . . .

]

= χ0(t) f(t)− χ1(t) ḟ(t) +
1

2
χ2(t) f̈(t) + . . . ,

(4.48)
being f(s) is a continuous function of time. The latter equation is nothing but a Taylor
expansion of the function f(s) in the integral for s ≈ t−, assuming that the response
kernelMR(t, s) is peaked at s = t and rapidly decaying over time. The integrated response
moments χn(t) are de�ned as

χn(t) ≡
∫ t

0

dsMR(t, s) (t− s)n . (4.49)

It is shown in Appendix B.2.4 that the moments with n ≥ 2 vanish in the hard-sphere limit.
The physical picture behind the short-rangeness of the memory kernel is the following.
Whenever, in the original dynamics, the interaction potential between any two particles,
say i and j, is non-vanishing then it must exactly compensate the projection of their relative
instantaneous velocity along the direction r̂ij . It thus comes as no surprise that in the DMFT
framework too the average force exerted on the particle does not depend on the remote
past of the trajectory. Using this property, the general motion equation (4.31) for y(t) can
be approximated for λ� 1 as

ζ̂ ẏ(t) = −γ(t) y(t)− χ1(t) ẏ(t)− Û ′(h(t)) + Ξ(t) , (4.50)
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where γ(t) ≡ κ(t)−χ0(t), and the same transformation can be applied to all the dynamical
equations containing the two reaction terms κ(t) andMR(t, s). Their physical meaning
is transparent: the �rst coe�cient γ(t) is an elastic coe�cient and we expect it to vanish
in the long-time limit, since we are in the dilute phase and the individual trajectories are
not dynamically arrested near their initial position. The second coe�cient gives the �rst-
order density correction to the bare friction coe�cient ζ̂ , the main information needed to
understand how a small density a�ects the dynamics. We also underline that this expansion
does not depend on the low density assumption but on the hard-sphere interactions, and
holds at any density.

The computation of the dynamical kernels is tedious and mostly technical, and is there-
fore deferred to Appendix B.2.3. It relies on the computation of the two-particle process
h(t) and on the �uctuating response H(t, s), which are respectively performed in Ap-
pendix B.2.1 and B.2.2. Altogether, in the long-time limit one gets

γ∞ = 0 , χ∞1 =
ϕ̂

4
ζ̂

(
1 +

√
2

3
√
π
w3

0

)
≡ ϕ̂

ϕ̂0(w0)
ζ̂ . (4.51)

E�ective self-propulsion

The last result allows us to compute the e�ective self-propulsion in the steady state, namely
the velocity along the self-propulsion direction. To do so, we write the equation for the
displacement of a generic particle δri(t) = ri(t)−ri(0), derived through a dynamical cavity
method, before the in�nite-dimensional rescaling [2]. Since all particles are equivalent the
label i is dropped in the following. This reads

ζδ̇r(t) = −k(t)δr(t) +

∫ t

0

dsMR(t, s)δr(s) + v(t) + ξ(t) ,

〈fµ(t)〉 = 0 , 〈fµ(t)fν(t
′)〉 = δµν ΓC(t− t′) ,

〈ξµ(t)〉 = 0 , 〈ξµ(t)ξν(t
′)〉 = δµνMC(t, t′) .

(4.52)

Note that, as we mentioned while presenting the spirit of the DMFT framework, the one-
particle equation has the same functional form as the two-particle one Eq. (4.31) (without of
course the pair potential Û ). Indeed, as we have seen before in the static equilibrium case,
if a particle of the active �uid interacts with a given tagged particle i, it has no way to in-
teract (nor to have interacted in the past over time scales of orderO(1)) with another given
tagged particle j next to i. The only thing the �uid particle knows about is the trajectory
of particle i, which can however be modi�ed by the presence of particle j through their
direct pair interaction. This is in spirit the argument that allows to obtain the two-body
process Eq. (4.31) from a mere subtraction of two independent one-body ones coupled by
a pair-potential (subsequent projections are needed to reach the scalar form in Eq. (4.31)).
We then de�ne the dynamical observable A(t, t′)

A(t, t′) =
ζ

v0

〈δr(t) · v(t′)〉 , (4.53)
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measuring the total displacement at time t along the direction of the active force at time t′.
This quantity leads to the de�nition of the e�ective propulsion v(ϕ̂) as

v(ϕ̂) =
∂

∂t
A(t, t′)

∣∣∣∣
t=t′

=
1

v0

〈
ζδ̇r(t) · v(t)

〉
. (4.54)

At zero density, the free-particle is moving at the bare self-propulsion speed v0, and we
expect v(ϕ̂) to decrease monotonically with the density. The quantity A(t, t′) follows the
dynamical equation

∂tA(t, t′) = −k(t)A(t, t′) +

∫ t

0

dsMR(t, s)A(s, t′) +
dζ

v0

ΓC(t− t′) , (4.55)

having exploited the independence between the active noise and the bath noise, i.e.
〈ξ(t) · v(t′)〉 = 0. When t, t′ →∞, we obtain the steady-state dynamical equation

ζ∂tA(t, t′) = −g(t)A(t, t′)− c1(t)∂tA(t, t′) +
dζ

v̂0

ΓC(t− t′) , (4.56)

where g(t) = k(t) −
∫ t

0
dsMR(t, s) = (2d2/σ2)γ(t) → 0 and c1(t) =

∫ t
0

dsMR(t, s) (t −
s) = (2d2/σ2)χ1(t) → c∞1 when t → ∞. The last results hold for ΓC(t − t′) = v2

0/d, and
the stationary friction correction reads c∞1 = ζ(1 + ϕ̂/ϕ̂0). So, Eq. (4.54) gives us

v(ϕ̂) =
v0

1 + ϕ̂/ϕ̂0(w0)
. (4.57)

This is the fundamental result of this calculation. We show then that, to the �rst order in ϕ̂,
the e�ective propulsion in a dilute media is damped by a factor 1 + ϕ̂/ϕ̂0(w0), accounting
for the slowing down of particles’ velocity caused by interactions. Considering the dilute
limit approximation ϕ̂� 1, its �rst-order expansion in ϕ̂ coincides with the result obtained
from Fokker-Planck equation in Eq. (4.25).

4.1.4 Transient behavior of Hard Spheres

When w0 = 0, we recover the purely repulsive hard-sphere interaction potential, namely

ÛHS(h) =

{
∞ h < 0

0 h > 0
. (4.58)

All calculations above are valid for the case w0 = 0. Furthermore, in this case one can also
compute the transient dynamics of the dynamical kernels de�ned in Eqs. (4.32), which were
analytically unattainable in the general sticky spheres case. With the same procedure as
in the previous section, we approximate the hard-sphere potential with a soft-sphere one,
namely Û(h) =

ε

2
h2θ(−h). The hard-sphere potential is recovered in the ε → ∞ limit.

This soft-sphere potential is equivalent to the sticky-sphere one de�ned in Eq. (4.16), in the
limit w0 → 0 and λ → ∞ keeping λw0 = ε �xed, and it is the same interaction potential
already analyzed in the solution of equilibrium dynamics presented in [138].
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This choice makes the analytical computation of the dynamical kernels much easier;
indeed, one can follow the same scheme described for sticky spheres to access the pair
distribution function g(h, t) and the dynamical kernels κ(t),MR(t, t′) andMC(t, t′). The
pair distribution function evolution is given by Eq. (4.46), setting w0 = 0 (and so its steady
state). For the dynamical kernels, we can avoid the limit t→∞ in their calculation; we get
then the �rst integrated response moments, �nally leading to

γ(t) =
ϕ̂

2
v̂0

[
e−t

2/2

√
2π
− t

2
erfc

(
t√
2

)]
,

χ1(t) =
ϕ̂

4
ζ̂ erf

(
t√
2

)
,

MC(t, t′) =
ϕ̂

4
v̂2

0

[
erfc

( |t− t′|√
2

)
+ erfc

(
t√
2

)
(1 + tt′)−

√
2

π
t′ e−t

2/2

]
,

(4.59)

always expressing the time t in units of the natural time scale τ0 = ζ̂/v̂0. The steady-
state limit is the same as that described for the sticky-sphere case, i.e. γ∞ = 0 and χ∞1 =

ϕ̂ ζ̂/4 ≡ ϕ̂ ζ̂/ϕ̂0. Furthermore, we can characterize the noise correlation in the long-time
limit, where it only depends on the time di�erence s = t− t′, namely

M∞
C (s) =

ϕ̂

4
v̂2

0 erfc
|s|√

2
. (4.60)

The above result thus reintroduces in the steady state dynamics to �rst order in ϕ̂ a
colored noise that hampers our attempts to go further in the density expansion. The time
scale over which this noise is correlated is set by the typical duration of a collision. Equation
(4.60) allows us to derive the behavior of the MSD in the long-time limit; indeed, with the
kernels computed in Eq. (4.59), the correlation-response equations now read

ζ̂
∂

∂t
R(t, t′) =

δ(t− t′)
2

− γ(t)R(t, t′)− χ1(t)
∂

∂t
R(t, t′) ,

ζ̂
∂

∂t
C(t, t′) = −γ(t)C(t, t′)− χ1(t)

∂

∂t
C(t, t′) +

∫ t′

0

ds [GC(t− s) +MC(t, s)]R(t′, s) .

(4.61)

The �rst equation can be explicitly solved in the steady-state limit, giving

R∞(s) =
1

2ζ̂(1 + ϕ̂/ϕ̂0)
θ(s) . (4.62)

With this result, and from Eq. (4.37), one can derive an equation for the MSD in the steady-
state limit t, t′ � 1, as a function of the dimensionless time di�erence s = t− t′, i.e.

∆̇(s) =
1

(1 + ϕ̂/ϕ̂0)2

{
s+

ϕ̂

ϕ̂0

[
s erfc

s√
2

+

√
2

π

(
1− e−s2/2

)]}
, (4.63)

and this equation can be easily integrated, yielding

∆(s) =
1

(1 + ϕ̂/ϕ̂0)2

{
s2

2
+

ϕ̂

ϕ̂0

[
s√
2π

(
2− e−s2/2

)
− 1

2
erf

s√
2

+
s2

2
erfc

s√
2

]}
. (4.64)
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Figure 4.4: Mean squared displacement ∆(t) vs t from Eq. (4.64) for several values of
rescaled density ϕ̂ (left,w0 = 10) and attractive forcew0 (right, ϕ̂ = 1). The MSD is ballistic
at short and long times, but the increase in density or in adhesion induces a slowdown at
intermediate times, respectively given by the many-body interactions or the duration of an
adhesive collision. We compare the short and long time behavior from Eq. (4.65) for the
case w0 = 20 in the right panel (dashed blue lines).

The solution above shows that the dynamics is ballistic at short and long times (this comes
as no surprise given that we have taken the limit τ → ∞), with a slowdown at interme-
diate times given by the presence of interactions. With the e�ective propulsion de�nition
computed in Eq. (4.57), it is clear that

∆(s) ∼ v(ϕ̂)2

2ζ̂2
s2 ×

{
1 + ϕ̂/ϕ̂0 s� τ0

1 s� τ0

(4.65)

with τ0 = ζ̂/v̂0. The last result contains two pieces of information: one is the MSD at
short times, which is ballistic with a contribution from the self-propulsion v(t) and from
the force exerted by the surrounding particles ξ(t); the equal-time variance of the latter
gives the additional contribution ϕ̂/ϕ̂0 in the �rst line. At long times, interactions decor-
relate (at least in the dilute phase) and the MSD is dominated by the ballistic contribution
from the in�nitely persistent self-propulsion, so the particle maintains its velocity v(ϕ̂).
To �rst order in the density, the long-time MSD is thus the same as that of a free particle
with a rescaled self-propulsion speed v0 → v(ϕ̂). This is in agreement with the numerical
observation of [196].

4.1.5 Conclusions

In this section, we studied, in the low density/high persistence time regime, the behavior
of self-propelled sticky spheres in in�nite dimension. The considered sticky sphere po-
tential generalizes the hard-sphere one and introduces a new parameter w0 with which the
propensity of two particles to stick together increases. We derived the associated stationary
two-point distribution function and the corresponding e�ective self-propulsion both from
the dilute limit of the BBGKY hierarchy and within the DMFT framework. In particular, we
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have shown that the larger w0 is the fastee the decay of the e�ective self-propulsion with
the density ϕ̂ is.

The last part of our analysis has been dedicated to the transient behavior of hard spheres
by means of dynamical mean-�eld theory; it has been shown how, starting from an equi-
librium con�guration, the system relaxes towards a stationary state. This relaxation is de-
scribed by the transient part of the dynamical coe�cients, and in this limit we computed the
MSD in the steady state, elucidating how the interplay between active self-propulsion and
interactions a�ects its short-time behavior, while the in�nitely persistent self-propulsion
dominates at long times.

These results constitute a starting point for a more complete analysis of active systems
in high dimensions. The next step along this line of research is its extension to higher
densities and �nite persistence times. This task being severely hard to accomplish via ana-
lytical tools, a numerical solution of DMFT equations must be found, in line with previous
results [181, 138]. However, if the self-propulsion is too strong or too persistent, the trajec-
tories drift away and the solution relies on the statistics of exponentially rare events. The
development of importance-based algorithms is then required and would give an important
edge in the solution of the problem at any density.

Another approach that may be tackled in the future concerns the limit of small persis-
tence time; in that case, often studied in active matter systems [60, 57], the dynamics can
be perturbatively studied starting from the equilibrium solution. Its analysis would lead to
understand how a small amount of activity a�ects the dynamics, i.e. the behavior of dynam-
ical kernels, the interplay between the dynamical transition and the crowding transition,
and the e�ects on �uctuation-dissipation relations.

4.2 An approximate resummation scheme for activemat-
ter in the ballistic limit

In this section, we study the steady state of in�nite dimensional RTPs beyond the dilute
limit. The N -body stationary distribution function being unknown in that case, the ap-
proach of Frisch and collaborators [68], based on an exact truncation of the density expan-
sion of the free energy functional of standard equilibrium �uids at large d, is not available.
Instead we use the BBGKY hierarchy of correlation functions as a starting point. In Sec. 3.2,
we showed that one could recover the results of [68] for equilibrium systems through its
exact resummation at large d. Here we start by using the Kirkwood approximation as a
closure of the BBGKY hierarchy. We show that in in�nite dimension the latter is unable to
account for the rich behavior of self-propelled particle systems observed in low dimension.
We claim that this is not a peculiarity of the in�nite dimensional limit but rather a failure
of the Kirkwood approximation to accurately describe the system. In Sec. 4.2.2, we devise a
strategy for resumming the BBGKY hierarchy that clearly highlights the role of multibody
interactions. This strategy was presented in [175]. We originally believed the induced re-
summation was exact in the limit d → ∞ and that was one of the claims of [175]. We
now know that the proposed resummation only partially takes into account these e�ects.
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An erratum is being written out. I would like to stress here that my understanding of the
importance of multibody e�ects in in�nite dimensional systems, in particular in regards
with the results of Dynamical Mean Field Theory, greatly bene�ted from discussions with
Francesco Zamponi and Giulio Biroli, Alessandro Manacorda and Chen Liu. Here we give
an account of the proposed resummation scheme with a particular emphasis on which con-
tributions are taken into account and which are not. While [175] was restricted to the study
of hard spheres, we extend here these results by considering the sticky sphere potential in-
troduced in Sec. 4.1. The results we obtain are hence the fruit of a partial resummation of
the density expansion in in�nite dimension. They should thus be taken with caution by
the reader and presented with modesty by us. They however allow to grasp some interest-
ing physical e�ects and yield equally interesting results. We therefore hope they can bring
some insights into the structure of active �uid beyond two-body (a �eld that has not been
much studied, a notable exception being [93]) and the importance of multibody interactions
in active matter.

Throughout this section, we use scalings very similar to those of Sec. 4.1. However, we
set ζ = 1. The friction coe�cient ζ can indeed be absorbed into a rede�nition of time. In
the scalings of Sec. 4.1, this would amount to working with τ = τ̂ /d2. Instead, here, we
choose to work in the ultra ballistic limit τ = τ̂ /d. Together with v0 =

√
2v̂0d

3/2, this
guarantees that the product v0τ/

√
d remains �nite in the large d limit, so as to maintain a

competition between activity and repulsive pairwise interactions in the equation of state,
see Eq. (3.47). In these scalings, the typical duration of a collision between two particles is
O(1/d2) (it was O(1) in Sec. 4.1), O(1/d) less than the time it takes for a particle to �ip its
orientation.

4.2.1 Kirkwood approximation in in�nite dimensional active mat-
ter

In Sec. 3.2, we have completely characterized the structure of standard equilibrium in�nite
dimensional �uids. In particular, the Kirkwwod approximation becomes exact is this limit
as a direct consequence of (i) the geometrical properties of large dimensional spaces and (ii)
the underlying pair structure of the N -body stationary distribution. We start our study of
self-propelled hard spheres in large d by assuming that such a structure holds at the 3-body
level, i.e. that

g(3) (r1,u1; r2,u2; r3,u3) = g (r1,u1; r2,u2) g (r1,u1; r3,u3) g (r2,u2; r3,u3) . (4.66)

Following the same reasoning as in the equilibrium case, Eq. (4.66) holds if the N -body
measure can be written as a product over pair functions,

P (r1,u1; · · · : rN ,uN) =
∏

i<j

g (ri,ui; rj,ui) , (4.67)

provided g has the correct scaling as d→∞ given in terms of the associated Mayer function
f = g− 1 in Eq. (3.94). This hypothesis about the scaling of g is supported by our result on
the low density limit of the two-point correlation function in Eqs. (4.21)-(4.22). We further
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note that the DMFT equations explicitly show that h = d (r/σ − 1) is indeed correct scale
to describe the decay of f even at �nite ϕ̂. This hypothesis about the scaling of g is self-
consistently checked at the end of the calculation. In other words, Eq. (4.66) is expected to
hold if one can e�ectively neglect more-than-two body contributions in the stationary state
measure that would break structure of Eq. (4.67). Assuming that Eq. (4.66) holds truncates
the BBGKY hierarchy to second order, thus providing a closed form equation for the two-
point function g (r1,u1; r2,u2). From Eq. (3.12), the second order hierarchy equation reads,

− v0u1 ·∇r1g − v0u2 ·∇r2g + ∇r1 (g∇r1U(r1 − r2)) + ∇r2 (g∇r2U(r2 − r1))

+R1g +R2g + ρ∇r1

∫
dr3

du3

Ωd

g(3) (r1,u1; r2,u2; r3,u3)∇r1U (r1 − r3)

+ ρ∇r2

∫
dr3

du3

Ωd

g(3) (r1,u1; r2,u2; r3,u3)∇r2U (r2 − r3) = 0 ,

(4.68)

where
F1 = ρ

∫
dr3

du3

Ωd

g(3) (r1,u1; r2,u2; r3,u3)

g (r1,u1; r2,u2)
∇r1U (r1 − r3) , (4.69)

is the mean force exerted by all the N − 2 remaining particles on the particle sitting at
r1 conditioned on the fact that is has a self-propulsion vector u1 and that there is another
particle at r2 with self-propulsion vector u2. Within the Kirkwood closure approximation
Eq. (4.66), it is expressed as

F1 = ρ

∫
dr3

du3

Ωd

g (r1,u1; r3,u3) g (r2,u2; r3,u3)∇r1U (r1 − r3) . (4.70)

which has a structure very similar to the mean force we computed in the equilibrium case
in Eq. (3.120) from which we can conclude that g (r2,u2; r3,u3) = 1 everywhere in the
integration volume of the above integral but in an exponentially small fraction of it. Let us
now repeat the argument. We are only interested in con�gurations in which |r1 − r2| & σ
as the two particles cannot overlap. The integral in Eq. (4.70) is furthermore restricted to
regions where |r1 − r3| ' σ. Therefore, |r2 − r3| ' σ implies that r̂12 · r̂13 = O(1), an event
that has vanishingly small probability in the large d limit. The situation is summarized in
Fig. 4.5. which shows all the particles that surround the one at r1. The dashed particles are
all the ones that contribute to the conditional mean force F1 and none of them interacts
directly with r2, i.e. g (r2,u2; ri,ui) = 1. Incidentally and for the same reason, there is
no direct interactions between the di�erent particles contributing to F1: the interaction
network is tree-like. Up to exponentially small corrections, the conditional mean force is
then obtained as

F1 = ρ

∫
dr3

du3

Ωd

g (r1,u1; r3,u3)∇r1U (r1 − r3)

= (v0 − v(ϕ̂))u1 ,

(4.71)

with v(ϕ̂) the e�ective self-propulsion de�ned in Eq. (3.15). Note that within the Kirkwood
approximation, and as in equilibrium, the mean force exerted by the rest of the �uid on
the particle at r1 with orientation u1 conditioned on the presence of another particle at r2

with orientation u2 is exactly equal to that exerted by the rest of the �uid on a particle at
r1 with orientation u1 in the absence of conditioning. The main di�erence between the
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Figure 4.5: A sketch of the di�erent particles surrounding the one at r1. The dashed particles
are the ones contributing to the conditional mean force F1. None of them interacts directly
with the one at r2.

equilibrium and the active cases being that in the latter the isotropy of space is broken at
the one particle level by the self-propulsion vector u1, thus making the mean force non
vanishing. One therefore obtains a self-consistent equation for the two-point distribution
function,

− v(ϕ̂)u1 ·∇r1g + ∇r1 (g∇r1U(r1 − r2)) +R1g

− v(ϕ̂)u2 ·∇r2g + ∇r2 (g∇r2U(r2 − r1)) +R2g = 0 .
(4.72)

In the hard sphere case, the two-point distribution function is thus given by its dilute limit
counterpart, Eqs. (4.21)-(4.22) at w0 = 0. The regularization of the product gU ′ is however
modi�ed with respect to the dilute limit case with v0 becoming v(ϕ̂) in Eq. (4.26). This leads
to the following self-consistent equation for the e�ective self-propulsion,

v (ϕ̂) = v0 − v (ϕ̂)
ϕ̂

4
, (4.73)

thus yielding
v (ϕ̂) =

v0

1 + ϕ̂
4

. (4.74)

The rescaled mechanical pressure can accordingly be computed within this truncation scheme
and read,

P = v̂0σ


 v̂0τ

σ

ϕ̂

1 + ϕ̂
4

+
ϕ̂2

4
√
π
(

1 + ϕ̂
4

)


 . (4.75)

Several observations are now in order. First, the obtained e�ective self-propulsion speed
does not reproduce the linear decay at moderate packing fraction measured [196] in �nite
dimensional simulations of strongly repulsive self-propelled particles. Second, the mechan-
ical pressure does not display any spinodal instability as P ′(ϕ̂) > 0 for all ϕ̂ and Péclet
number. The in�nite dimensional Kirkwood approximation thus performs rather poorly in
reproducing the properties of low dimensional active systems. This is not intrinsic to the
in�nite dimensional limit but this is a feature of the Kirkwood approximation that remains
at this level, just an... approximation.
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4.2.2 An approximate truncation scheme of the hierarchy

The reason for this failure of the Kirkwood approximation in in�nite dimensional active
systems lies in the fact that, in Fig. 4.5, the particle sitting at r2 in�uences the conditional
mean force through its direct in�uence on the particle sitting at r1, à la Onsager reaction
term. This sheds the light on the importance of multibody interactions in active matter,
at least at the mean-�eld level. In this section, we propose a resummation scheme of the
BBGKY hierarchy that partially takes them into account.

A virial expansion:

We follow the route paved in Sec. 3.2.7. We express the n-point distribution functions as
power series of the rescaled density ϕ̂,

g(n)(r1,u1; . . . ; rn,un) =
+∞∑

p=0

ϕ̂ pγ(n)
p (r1,u1; . . . ; rn,un) , (4.76)

and introduce the partial sums g(n)
p

g(n)
p (r1,u1; . . . ; rn,un) =

p∑

q=0

ϕ̂ qγ(n)
q (r1,u1; . . . ; rn,un) . (4.77)

We later self-consistently show that ϕ̂ is the correct expansion parameter so that for all
p ≥ 0 and all n ≥ 2 the functions g(n)

p (r1,u1; . . . ; rn,un) remain O(1) as d increases. The
BBGKY hierarchy Eq. (3.12) provides relations between the di�erent partial sums g(n)

p ,

− v0

n∑

i=1

ui ·∇rig
(n)
p +

n∑

i=1

n∑

j 6=i
∇ri

(
g(n)
p ∇riU(ri − rj)

)
+

n∑

i=1

Rig
(n)
p

+ ρ
n∑

i=1

∇ri

∫
dr′

du′

Ωd

g
(n+1)
p−1 (r1,u1; ...; rn,un; r′,u′)∇riU(ri − r′) = 0 .

(4.78)

for all n ≥ 2 and p ≥ 1 together with the 0th order equations,

− v0

n∑

i=1

ui ·∇rig
(n)
0 +

n∑

i=1

n∑

j 6=i
∇ri

(
g

(n)
0 ∇riU(ri − rj)

)
+

n∑

i=1

Rig
(n)
0 = 0 , (4.79)

for all n ≥ 2. Note that we start to work with regular potentials that obey the in�nite
dimensional scalings of Sec. 4.1. From there, the in�nitely short-ranged limit is taken step
by step as the BBGKY hierarchy is resummed.

Zeroth order solution:

As for the equilibrium case, we start by solving the zeroth order equations in (4.79). We
investigate �rst the scalings with d of the di�erent terms appearing in these equations. We
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recall that the n-body distribution varies over scales |δri| = O(1/d), so that gradients of
g

(n)
0 are typically of order O(d), ∣∣∣∇rig

(n)
0

∣∣∣ ∼ d . (4.80)

Furthermore, the scalar product of the gradient with ui yields a 1/
√
d factor. Taking into

account the scaling of the self-propulsion v0 = O(d3/2), we obtain
∣∣∣v0 ui ·∇rig

(n)
0

∣∣∣ ∼ d2 . (4.81)

The terms in Eq. (4.79) induced by the potential interaction have the same amplitude. In-
deed, we work with pair-potential de�ned in such a way that limd→∞ U(r) = Û(h) with
h = d (r/σ − 1). Therefore,

|∇riU(ri − rj)| ∼ d . (4.82)
The divergence ∇ri then brings in an additional O(d) factor as explained above. There
is no additional 1/

√
d factor as g(n)

0 seen as a function of ri varies over 1/d scales in the
directions set by the relative separations r̂ij = (ri − rj) / |ri − rj|. Therefore,

∣∣∣∇ri ·
(
g

(n)
0 ∇riU(ri − rj)

)∣∣∣ ∼ d2 . (4.83)

An important comment is now in order. We have seen that,

|v0ui| � |∇riU(ri − rj)| , (4.84)

as the latter is O(d) while the former is O(d3/2). However, inside the ∇ri operators, both
vectors yield the same amplitude as the divergence projects along components that are
roughly aligned with ∇riU(ri− rj) and almost orthogonal to ui. Therefore, when compar-
ing two quantities, we should be cautious to compare scalar ones and not vectorial ones.
Finally, we recall that τ = O(1/d). Consequently, the �ipping terms in the equation for the
n-body correlation function scale as O(d),

∣∣∣∣∣
1

τ

∑

i

(∫
du′i
Ωd

g(n) − g(n)

)∣∣∣∣∣ ∼ d . (4.85)

Thus, in Eq. (4.79), the potential and the convective terms have the same amplitude d2. The
�ipping terms are 1/d smaller, a signature that the considered scalings automatically place
us in the ultraballistic limit. We now look for a solution of Eq. (4.79). Let us single out
arbitrarily the particle labeled n and propose the following ansatz,

g
(n)
0 (r1,u1; . . . ; rn;un) =g

(n−1)
0 (r1,u1; . . . ; rn−1;un−1)

[
n−1∏

i=1

g
(2)
0 (ri,ui; rn,un)

]
× . . .

· · · ×
(

1 +K0(r1,u1; . . . ; rn;un)

)
,

(4.86)

schematically illustrated in Fig.4.6 and where K0 is yet to be determined. We then insert
Eq. (4.86) into Eq. (4.79). In order to lighten up notations, the arguments of g(n−1)

0 and K0

103



Chapter 4

rn
r3

r2

r1

ri

rn−1

Figure 4.6: A schematic representation of the ansatz Eq. (4.86). The particle labeled n is
singled out. Particles labeled i ∈ J1, n − 1K are grouped together in a g(n−1)

0 term while
couplings between particle n and particles i is taken into account by two-body distribution
functions g(2)

0 .

are dropped and we write g(2)
0 (ri,ui; rj,uj) = g

(2)
0 (i, j). We eventually obtain the (nasty-

looking) equation obeyed by K0,

g
(n−1)
0

n−1∏

j=1

g
(2)
0 (j, n)

[
−v0

n∑

i=1

ui∇riK0 +
n∑

i=1

n∑

j 6=i
∇riK0 ·∇riU(ri − rj)

]

+ (1 +K0)

[
g

(n−1)
0

n−1∑

i=1

n−1∑

j 6=i

(
n−1∏

k 6=i
g

(2)
0 (k, n)

)
∇rig

(2)
0 (i, n) ·∇riU(ri − rj)

+g
(n−1)
0

n−1∑

i=1

n−1∑

j 6=i

(
n−1∏

k 6=j
g

(2)
0 (k, n)

)
∇rng

(2)
0 (j, n) ·∇rnU(rn − ri)

+
n−1∏

j=1

g
(2)
0 (j, n)

n−1∑

i=1

∇rig
(n−1)
0 ·∇riU(ri − rn)

]

+
n∑

i=1

Ri

(
g

(n−1)
0

n−1∏

i=1

g
(2)
0 (i, n)(1 +K0)

)
− (1 +K0)

n−1∏

j=1

g
(2)
0 (j, n)

n−1∑

i=1

Rig
(n−1)
0

− g(n−1)
0 (1 +K0)

n−1∑

i=1

n−1∏

j 6=i
g

(2)
0 (j, n)

(
Rig

(2)
0 (i, n) +Rng

(2)
0 (i, n)

)
= 0 .

(4.87)

We will not attempt to solve Eq. (4.87). It is however instructive to determine the order in
d of the various terms appearing in it. We use the same arguments as for determining the
scaling of those in Eq. (4.79). In the �rst two lines, they are of orderO(d2K0) with the order
of K0 yet unspeci�ed. In the next three lines they are all of order O((1 +K0)d3/2). Indeed,
both gradients ∣∣∣∇rig

(2)
0 (i, k)

∣∣∣ ∼ d , (4.88)

and
|∇riU(ri − rj)| ∼ d , (4.89)
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are of order O(d) but point in typically orthogonal directions, so that

∇rig
(2)
0 (i, k) ·∇riU(ri − rj) ∼ d3/2 , (4.90)

for k 6= i. Finally the �ipping terms in the last two lines scale as O(d). Consequently, the
unknown function K0 scales as O(d−1/2). As a conclusion, to zeroth order in density, we
have

g
(n)
0 (r1,u1; . . . ; rn;un) =g

(n−1)
0 (r1,u1; . . . ; rn−1;un−1)

[
n−1∏

i=1

g
(2)
0 (ri,ui; rn,un)

]
× . . .

· · · ×
(

1 +
K̂0(r1,u1; . . . ; rn;un)√

d

)
,

(4.91)

with K̂0 an O(1) function. Note that the choice of particle n is purely arbitrary. The zeroth
order distribution function can indeed be written to leading order as a product of g(2)

0 over
all the pairs,

g
(n)
0 (r1,u1; . . . ; rn;un) =

[
n∏

i<j

g
(2)
0 (ri,ui; rj,uj)

](
1 +

K̃0(r1,u1; . . . ; rn;un)√
d

)
, (4.92)

with K̃0 a di�erent O(1) function. The functional form in Eq. (4.91) will however be more
convenient in the resummation of the hierarchy. At this level, the di�erence with the purely
pairwise structure of standard equilibrium �uids Eq. (3.125) is seemingly vanishing as it
scales as O(d−1/2). It is however no longer exponentially decaying with d. As we explain
now, this leaves room for non trivial e�ects.

The sticky sphere potential

We use the solution Eq. (4.91) of Eq. (4.79) as a starting point for the resummation of the
hierarchy. In order to get the �rst ϕ̂ term of the density expansion of g(n−1), one needs to
solve the hierarchy equation Eq. (4.78) at p = 1 i.e. to compute the force term

Gi,1 = ρ

∫
drn

dun
Ωd

g
(n)
0 (r1,u1; ...; rn,un)∇riU(ri − rn) (4.93)

for any i = 1, . . . , n−1 and where the index 1 stands for �rst iteration in the virial resumma-
tion. Note that we did not call the above integral Fi on purpose as it only takes the meaning
of a conditional mean force when divided by g(n−1). We now restrict our study to the case
of in�nitely short ranged potentials of the sticky sphere type introduced in Sec. 4.1. Per-
forming the integral in Eq. (4.93) thus requires regularizing the product g(n)

0 ∇riU(ri− rn).
In the vein of Eq. (2.93), we now derive such a formula that holds independently of the
large d limit and for which we give a simple interpretation. For the sake of simplicity of the
notations we choose i = 1 but all i′s are of course equivalent. We �rst go back to Eq. (4.79)
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where we change variables and de�ne xi = ri − r1 for i ∈ J2, nK. Isolating the variable xn
and taking advantage of the translational invariance of the distribution function we obtain

− v0

n−1∑

i=2

(ui − u1) ·∇xig
(n)
0 − v0 (un − u1) ·∇xng

(n) +
n∑

i=1

Rig
(n)
0

+
n−1∑

i=2

∇xi ·
[
g(n)

(
n−1∑

j 6=i
∇xiU(xi − xj) + ∇xiU(xi − xn) + 2∇xiU(xi) +

n−1∑

j 6=i
∇xjU(xj)

+ ∇xnU(xn)

)]
+ ∇xn ·

[
g

(n)
0

(
n−1∑

i=2

∇xnU(xn − xi) + 2∇xnU(xn) +
n−1∑

i=2

∇xiU(xi)

)]
= 0 .

(4.94)

As shown in Eqs. (2.93) and in App. B.1, in the limit where U(xn) becomes in�nitely short-
ranged, the integrated normal �ux vanishes at xn = σ, i.e.

2 lim
short-ranged

∫ +∞

σ

dxn g
(n)
0 (0,u1;x2,u2; . . . ;xn,un)U ′(xn) =

lim
ε→0+

lim
short-ranged

∫ σ(1+ε)

σ

dxn

(
v0(un − u1)−

n−1∑

i=2

∇xnU(xn − xi)−
n−1∑

i=2

∇xiU(xi)

)
· x̂n × . . .

. . .× g(n)
0 (0,u1;x2,u2; . . . ;xn,un) .

(4.95)

This can be demonstrated by splitting the divergence ∇xn into a radial and a non radial
part and integrating over the radial distance xn as in Eqs. (2.87) and (2.93). Equation (4.95)
quanti�es the idea that (i) the force U(xn) is zero whenever xn > σ and (ii) when non-zero
it must exactly compensate the normal relative velocity between particle 1 and particle n.
This relative velocity depends both on the relative self-propulsion velocity un − u1 and
on the potential interactions with the other tagged particles. Independently of the large d
limit, G1,1 can thus be evaluated as

G1,1 =− ρΩdσ
d

2

∫
dx̂n
Ωd

dûn
Ωd

x̂n

[
lim
ε→0+

lim
short-ranged

∫ σ(1+ε)

σ

dxn
σ

(
v0 (un − u1)

−
n−1∑

i=2

∇xnU(xn − xi)−
n−1∑

i=2

∇xiU(xi)

)
· x̂n g(n)

0 (0,u1;x2,u2; . . . ;xn,un)

]
,

(4.96)

Let us now go back to the in�nite dimensional case. First we stress that the particles are
non overlapping so that |xi| & σ. Therefore,

d (|xi − xn| − σ) = d

(√
x2
i + σ2 − 2xiσx̂i · x̂n − σ

)

−→
d→∞

+∞ ,
(4.97)

but in an exponentially small fraction of phase space. While computing G1,1 we can thus
neglect the potential interactions between the particle at rn and those at ri for i = 2, . . . , n−
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1 as is usual in in�nite dimensional systems of interacting spherical particles. We de�ne Fi,1
the conditional mean force exerted on particle i at the �rst iteration of the resummation,

Fi,1 =
Gi,1

g
(n−1)
0 (r1,u1; . . . ; rn;un)

, (4.98)

that we thus express for i = 1 as

F1,1 =− ρΩdσ
d

2

∫
dx̂n
Ωd

dûn
Ωd

x̂n

[
lim
ε→0+

∫ σ(1+ε)

σ

dxn
σ

(
v0 (un − u1)−

n−1∑

i=2

∇xiU(xi)

)
· x̂n

× lim
short-ranged

g
(2)
0 (0,u1;xn,un)

(
1 +

K̂0√
d

)]
.

(4.99)

In the above equation we have commuted the short-range limit and the gradients of U(xi).
We are thus taking this limit for the potential interactions of particle nwith the (n−1) other
particles (dashed lines in Fig.4.6) while keeping regular the potential interactions between
particles i = 1, . . . , n−1 (within the continuous line in Fig.4.6). The in�nitely-short ranged
limit is then taken layer by layer as the hierarchy is resummed. We recall that that the norm
of the potential gradients is O(d−1/2) smaller than that of v0 (un − u1) so that to leading
order Eq. (4.99) writes,

F1,1 = −v0
ρΩdσ

d

2

∫
dx̂n
Ωd

dûn
Ωd

x̂n

[
lim
ε→0+

∫ σ(1+ε)

σ

dxn
σ

(un − u1) · x̂n g(2)
0 (0,u1;xn,un)

]
,

(4.100)
consistently with Eq. (4.91) and where the limshort-ranged is implicit. As explained after Eq. (4.84),
the subleading terms are however non-negligible and give rise to leading order terms in the
BBGKY hierarchy through the action of the divergence operator ∇ri .

Equation (4.99), which is exact up to exponentially small corrections, is an important
preliminary result of this work. It shows that the leading order Eq. (4.100) of the mean force,
conditioned on the positions and orientations of n − 1 tagged particles, exerted on any of
these by the surrounding �uid made of theN−n+1 others, is equal to that exerted on any
particle in the absence of conditioning but on its own orientation. The presence of the n−2
other tagged particles slightly modi�es the result in two ways that are clearly disentangled
in the in�nitely short-ranged limit. First, from the point of view of the surrounding �uid,
the apparent self-propulsion of particle 1 is not v0u1 but is dressed by the interactions with
the other tagged particles. This is depicted in Fig.4.7. This in turn modi�es the distribution
of the �uid particles at contact with particle 1 with respect to the untagged case, hence the
K̂0 correction.

Approximate resummation scheme:

Equation (4.99) does not allow a full determination of the conditional force since K̂0, de�ned
by the solution of Eq. (4.87), remains undetermined. In order to get further insights into
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r1

v0u1

v0u1

v0u1 +
∑n−1

i>1 ∇r1U(r1 − ri)

r1

r2
rn−1

Figure 4.7: (Left) A tagged particle moves in the �uid made of the N − 1 remaining ones.
From the point of view of the latter, its apparent self-propulsion is v0u1. (Right) A tagged
particle with n−2 neighboring tagged ones moves in the �uid made of theN−n+1 others.
From the point of view of the �uid its apparent driving is dressed by the interactions with
particles i for i = 2, . . . , n− 1.

the behavior of active �uids we need to make some approximation. We choose to neglect
the contributions coming from K̂0 and we will propagate this approximation at each step
of the resummation of the virial series. This yields,

F1,1 =− ρΩdσ
d

2

∫
dx̂n
Ωd

dûn
Ωd

x̂n

[
lim
ε→0+

∫ σ(1+ε)

σ

dxn
σ

(
v0 (un − u1)−

n−1∑

i=2

∇xiU(xi)

)
· x̂n × . . .

· · · × g(2)
0 (0,u1;xn,un)

]
.

(4.101)

We stress that this truncation is approximate and prevents the derivation of [175] from
being exact, at odds with the claim originally made in that paper. We recall from Eq. (4.79)
that g(2)

0 (0,u1; r,u2) is the solution of,

− v0 (u1 − u2)∇rg
(2)
0 + 2∇r

(
g

(2)
0 ∇rU(r)

)
= 0 , (4.102)

in the in�nitely short-ranged limit and where we have dropped the subleading �ipping
terms. With the potential U given by

lim
d→∞

U(r) = Û(h) with h = d (r/σ − 1) , (4.103)

and Û the sticky sphere potential of Eq. (4.16), the solution of the above equation was given
in Sec. 4.1.2. In terms of the rescaled variables h = d(r/σ − 1) and w =

√
d û1n · r̂ it reads

g
(2)
0 (0,u1; r,un) = Θ(h)f0(h,w) + δ(h)Γ0(w) , (4.104)

with the bulk term obtained as

f0(h,w) =

[
1−Θ(w)Θ

(
w2

2
− h
)

+ Θ(w)e
w2

0
2 δ

(
h− w2

2
+
w2

0

2

)]
, (4.105)
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and the surface term given by

Γ0(w) = Θ(−w) + Θ(w)Θ(w0 − w)e
w2

2 . (4.106)

We recall that in Eqs. (4.105) and Eqs. (4.106), w0 is de�ned as

w0 = max

(
Û ′(h)

v̂0

)
, (4.107)

with v0 = (
√

2d3/2/σ)v̂0. We are now in position to compute the zeroth order conditional
mean in this truncated scheme. We �rst note that for any unit vectoru and in any dimension
d, ∫

dx̂
Ωd

x̂µx̂ν Γ
(√

dx̂ · u
)

=
1

d
(Auµuν +Bδµν) , (4.108)

where the above tensorial form is a direct consequence of the symmetries of the integral
and with the coe�cients A and B given by

A =

∫
dw

2Wd−2

(
1− w2

) d−3
2

[
dw2 − d

d− 1

]
Γ(
√
dw) ,

=
d→∞

∫
dw√
2π

e−w
2

2

(
w2 − 1

)
Γ(w) ,

(4.109)

and

B =
d

d− 1

∫
dw

2Wd−2

(
1− w2

) d−3
2 Γ(

√
dw) ,

=
d→∞

∫
dw√
2π

e−w
2

2 Γ(w) .

(4.110)

We can therefore write the component µ of the conditional mean force as,

F µ
1,1 =− ρVd(σ)

2

∫
dûn
Ωd

[
v0 (uνn − uν1) +

n−1∑
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∇µ
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]∫
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x̂µnx̂
ν
nΓ
(√

dx̂n · û1n

)
,

=− ϕ̂

2
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∇µ
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]
(Auµ1nu

ν
1n +Bδµν) ,

=− ϕ̂

2

∫
dûn
Ωd

[
v0(A+B) (uµn − uµ1) + Auµ1n

n−1∑

i=2

∇r1U(r1 − ri) · û1n

+B
n−1∑
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∇µ
r1U(r1 − ri)

]
,

=− ϕ̂

2

[
−v0(A+B)uµ1 +B
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i=2

∇µ
r1U(r1 − ri)

]
,

(4.111)

where the last line is obtained by keeping only the leading order component along u1. Note
that the conditional mean force is non-vanishing along the self-propulsion vector u1, which
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is the idea behind the e�ective self-propulsion, but also along the total force exerted by the
n − 2 other tagged particles. The latter e�ect is not due to some steric hindering exerted
by these particles on the remaining N −n+ 1 ones but to the modi�cation of the apparent
speed of particle 1 in their presence. Of course, in deriving Eq. (4.111), the number n− 1 of
tagged particles was completely arbitrary.

Resumming the hierarchy:

Using Eq. (4.111), the �rst order density corrections of the n-body distribution functions
are obtained as solutions of,

− v0

n∑

i=1

ui∇rig
(n)
1 +

n∑

i=1

n∑

i 6=j
∇ri

(
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[
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(n)
0

(
v0 (A+B)ui −B
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j 6=
∇riU (ri − rj)

)]
= 0 ,

(4.112)

for any n ≥ 2 and where the subleading �ipping terms have been suppressed. In a way
perfectly consistent with the order 1 density expansion we consider here, we can replace
g

(n)
0 by g(n)

1 and get,
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ui∇rig
(n)
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with

v1 = v0 −
ϕ̂

2
v0
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2 w2Γ0(w)
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4
v0

(
1 +

√
2w3

0

3
√
π

)
,

(4.114)

and

µ1 = 1− ϕ̂

2

∫
dw√
2π

e−w
2

2 Γ0(w)

= 1− ϕ̂

4

(
1 +

√
2w0√
π

)
.

(4.115)

Remarkably, after one iteration in the density expansion, the hierarchical equations have
the same functional form as their zeroth order counterpart with renormalized coe�cients v1

and µ1 respectively in front of the self-propulsion and potential interaction terms. Note the
di�erence with respect to the Kirkwood approximation scheme in which only the speed, and
not the amplitude of the potential, was renormalized by the interactions. Equation (4.113)
moreover shows that ϕ̂ is indeed the correct expansion parameter of the virial series. We
can now use the same strategy as above to (i) solve for g(n)

1 and (ii) obtain the hierarchy
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equations after two iterations in the virial series. We know that the solution to Eq. (4.113)
writes

g
(n)
1 (r1,u1; . . . ; rn;un) =g

(n−1)
1 (r1,u1; . . . ; rn−1;un−1)

[
n−1∏

i=1

g
(2)
1 (ri,ui; rn,un)

]
× . . .

· · · ×
(

1 +
K̂1(r1,u1; . . . ; rn;un)√

d

)
.

(4.116)

Furthermore, following Eq. (4.95), we get in the in�nite dimensional limit

2 lim
short-ranged

µ1

∫ +∞

σ

dxn g
(n)
1 (0,u1;x2,u2; . . . ;xn,un)µ1U

′(xn) =

lim
ε→0+

lim
short-ranged

∫ σ(1+ε)

σ

dxn

(
v1(un − u1)− µ1

n−1∑

i=2

∇xiU(xi)

)
· x̂n × . . .

. . .× g(n)
1 (0,u1;x2,u2; . . . ;xn,un) ,

(4.117)

Therefore, at the second iteration of the virial series, the conditional mean force exerted on
particle 1 conditioned on the presence of the n− 2 neighboring ones reads,

F1,2 =
ϕ̂

2

v1

µ1

∫
dw√
2π

e−w
2

2 w2Γ1(w)u1 −
ϕ̂

2

∫
dw√
2π

e−w
2

2 Γ1(w)
∑

i 6=1

∇r1U(r1 − ri) . (4.118)

with Γ1(w) the surface term of the in�nitely short-ranged limit of the solution of the two-
body equation after the �rst iteration,

− v1 (u2 − u1)∇rg
(2)
1 + 2µ1∇r

(
g

(2)
1 ∇rU(r)

)
= 0 . (4.119)

Equation (4.119) having the same functional form as Eq. (4.102), we obtain Γ1 as,

Γ1(w) = Θ(−w) + Θ(w)Θ

(
v0µ1

v1

w0 − w
)
e
w2

2 (4.120)

The renormalized coe�cients v1 and µ1 modify the stationary two-point distribution by
rescaling w0. At small w0, the e�ective amplitude of the potential diminishes faster (as w0)
than does the e�ective speed (as w3

0) so that after one iteration of the virial series the sitcky
nature of the potential is reduced. One can now use Eq. (4.118) to go one order further in
the virial series so that the g(n)

2 ’s are obtained as the solutions of,

− v2

n∑

i=1

ui∇rig
(n)
1 + µ2

n∑

i=1

n∑

i 6=j
∇ri

(
g

(n)
1 ∇riU(ri − rj)

)
= 0 , (4.121)

with

v2 = v0 −
ϕ̂

4

v1

µ1

(
1 +

√
2w3

0

3
√
π

(
v0µ1

v1

)3
)
, (4.122)
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and

µ2 = 1− ϕ̂

4

(
1 +

√
2w0√
π

v0µ1

v1

)
. (4.123)

This procedure can be iterated to get, after full resummation of this truncated scheme, the
equation for the n-body correlation functions,

− v(ϕ̂)
n∑

i=1

ui∇rig
(n) + µ(ϕ̂)

n∑

i=1

n∑

i 6=j
∇ri

(
g(n)∇riU(ri − rj)

)
= 0 . (4.124)

The functions v(ϕ̂) andµ(ϕ̂) are the �xed points of the iteration scheme shown in Eqs. (4.122)
and (4.123),

v(ϕ̂) = v0 −
ϕ̂

4

v(ϕ̂)

µ(ϕ̂)

(
1 +

√
2w3

0

3
√
π

(
v0µ(ϕ̂)

v(ϕ̂)

)3
)
, (4.125)

and

µ(ϕ̂) = 1− ϕ̂

4

(
1 +

√
2w0√
π

v0µ(ϕ̂)

v(ϕ̂)

)
. (4.126)

Following Eq. (4.92), the solution to Eq. (4.124) can be cast to leading order in the form of a
product over pair functions,

g(n)(r1,u1; . . . ; rn;un) =

[
n∏

i<j

g(2)(ri,ui; rj,uj)

]
, (4.127)

with the two-point function solution of

− v(ϕ̂) (u2 − u1)∇rg
(2) + 2µ(ϕ̂)∇r

(
g(2)∇rU(r)

)
= 0 . (4.128)

In the in�nitely short-ranged limit, it reads

g(2) (0,u1; r,u2) = Θ(h)f(h,w) + δ(h)Γ(w) , (4.129)

with the bulk term obtained as

f(h,w) =

[
1−Θ(w)Θ

(
w2

2
− h
)

+ Θ(w)e
w(ϕ̂)2

2 δ

(
h− w2

2
+
w(ϕ̂)2

2

)]
, (4.130)

and the surface term given by

Γ(w) = Θ(−w) + Θ(w)Θ(w(ϕ̂)− w)e
w2

2 . (4.131)

The function w(ϕ̂) that quanti�es the strength of the attractive sticky part of the pair-
potential is given by

w(ϕ̂) = w0
v0µ(ϕ̂)

v(ϕ̂)
. (4.132)

In this truncated scheme, the structure of the �uid is thus very similar to that of a standard
equilibrium one with the notable distinction that all the coe�cients are renormalized by
the interactions. We furthermore stress that Eq. (4.125) together with Eq. (4.128) show that
v(ϕ̂) is indeed the true e�ective self-propulsion de�ned in Eq. (3.15).
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Solutions of the �xed point equations:

We now solve the �xed point equations (4.125) and (4.126). We de�ne c(ϕ̂) = v(ϕ̂)/v0 the
ratio between the e�ective self-propulsion at density ϕ̂ over its dilute limit counterpart. We
�rst study the purely hard-sphere case, w0 = 0. There Eqs. (4.125) and (4.126) simplify and
yield,

c(ϕ̂) = µ(ϕ̂) = 1− ϕ̂

4
. (4.133)

The above equation was the main result of [175]. It immediately de�nes the range of validity
of our calculation, i.e. ϕ̂ < 4. Indeed ϕ̂ > 4 would lead to a nonphysical negative e�ective
self-propulsion v(ϕ̂). We conjecture that for larger densities the hard sphere system is char-
acterized by vanishing v(ϕ̂) and µ(ϕ̂) for which the self-consistency equation Eq. (4.128)
is also satis�ed. We cannot however elucidate the structure of the �uid in this regime.
We denote by ϕ̂cr the crowding density at which both v(ϕ̂) and µ(ϕ̂) vanish. Remark-
ably, we recover in this truncated scheme the linear decay of the e�ective self-propulsion
speed for strongly repulsive interaction potentials observed in numerical simulations of
self-propelled particles in dimension 2 and 3 [193, 196]. Numerics also show the vanishing
of v(ρ) at a threshold that was observed to be independent of dynamical parameters [192,
193], at least in the large Péclet regime, as it is the case here. This e�ect is a �ne property
of the hard sphere potential and not a dilute limit result and that Eqs. (4.125) and (4.126),
while being only approximate, are non-perturbative in ϕ̂. An immediate consequence of
the equality between µ(ϕ̂) and c(ϕ̂) is that the two-point function at non-vanishing ϕ̂ is
equal to the dilute limit two-point function as can be seen from Eq. (4.128). In particular,
the equation of state for the mechanical pressure obtained in the dilute limit in Eq. (3.47)
extends for 0 < ϕ̂ < 4,

P ∝ v̂0τ̂

σ

(
1− ϕ̂

4

)
ϕ̂

4
+

√
2

π

(
ϕ̂

4

)2

. (4.134)

It allows for a spinodal instability when ϕ̂ < 4 and P ′(ϕ̂) < 0, hence for

P̂ e =
v̂0τ̂

σ
>

2
√

2√
π
, (4.135)

in line with the numerical observation [196] that the instability threshold for the Péclet
number increases with the dimension (we recall that v0τ ∼

√
dv̂0τ̂ ). When this criterion is

ful�lled the spinodal region is de�ned by

P̂ e

2
(
P̂ e−

√
2/π
) < ϕ̂

4
< 1 . (4.136)

The spinodal boundaries of the phase diagram are shown in Fig. 4.8. We now study the
sticky-sphere case w0 6= 0. Equation (4.126) allows to express µ(ϕ̂) as a function of c(ϕ̂),

µ(ϕ̂) =

√
πc(ϕ̂)(4− ϕ̂)

4
√
πc(ϕ̂) +

√
2w0ϕ̂

, (4.137)

which in particular show that the e�ective amplitude of potential forces µ(ϕ̂) and the e�ec-
tive self-propulsion v0c(ϕ̂) vanish at the same density ϕ̂cr that now depends on w0. When
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spinodal region

ϕ̂ > 4

spinodal regionϕ̂
4

P̂ e

Figure 4.8: Phase boundaries of a system of in�nite dimensional active hard-spheres within
the approximate resummation scheme in the (P̂ e, ϕ̂/4) plane. Cyan: Spinodal region for
ϕ̂ < 4.

ϕ̂

w0

v
(ϕ̂

)

ϕ̂

w0

µ
(ϕ̂

)

Figure 4.9: (Left) E�ective self-propulsion as a function of the rescaled density ϕ̂ for increas-
ing values of w0. (Right) E�ective potential force amplitude as a function of the rescaled
density ϕ̂ for increasing values of w0.

inserted in Eq. (4.125), the above equation yields an equation for c(ϕ̂) as a function of ϕ̂ and
w0. The latter takes the form of a third degree polynomial equation that we solve numer-
ically by selecting the root continuously linked to c = 1 at ϕ̂ = 0. We show the obtained
solution at moderate sticking strength w0 for both c(ϕ̂) and µ(ϕ̂) in Fig. 4.9. It shows that
for w0 6= 0 both c(ϕ̂) and µ(ϕ̂) decay non-linearly to zero with the density and that the
larger is the bare attraction strength the faster is the decay. Attraction thus enhances the
freezing of the system. For larger w0, the branch of the solution continuously linked to 1
at ϕ̂ = 0 develops an imaginary part before reaching zero. This might be the signature
of a discontinuous decay to 0 of the e�ective self-propulsion and e�ective potential force
amplitude at strong enough attraction. We don’t know however of any numerical work
that would have reported such a behavior. Upon integrating the self-propulsion degrees of
freedom, and according to Eq. (3.33), the radial distribution function reads,

g(h) = Θ(h)

[
1

2

(
1 + erf

(√
h
))

+
e−h√

2π (2h+ w(ϕ̂)2)

]
+

(
1

2
+
w(ϕ̂)√

2π

)
δ(h) , (4.138)

114



Active matter in infinite dimension

ϕ̂

w
(ϕ̂

)

Figure 4.10: Decay of the e�ective sticking strength w(ϕ̂) as a function of the rescaled
density ϕ̂ for di�erent values of w0. The curves end when the e�ective self-propulsion
vanishes.

with w(ϕ̂) = w0µ(ϕ̂)/c(ϕ̂) introduced in Eq. (4.132). It has the same functional form as the
dilute case, with the coe�cient w(ϕ̂) renormalized by the interactions. The latter quanti-
�es the amplitude of the sticking strength and is plotted for di�erent w0 as a function of
the density in Fig. 4.10. The curves end when the e�ective self-propulsion vanishes. This
shows in particular, that the interactions tend to diminish the attraction between the parti-
cles induced by the attractive part of the potential as was already conjectured after the �rst
resummation of the virial series in Eq. (4.120). This is an interesting and counter-intuitive
result of our resummation scheme that would deserve numerical analysis in �nite dimen-
sional systems.

4.2.3 Concluding remarks

Let us now make an interesting connection between in�nite dimensional active �uids and
in�nite dimensional passive ones and let us �rst restrict ourselves to the case of hard spheres
with w0 = 0. In position space, and as far as we are only concerned with the statics,
the active �uid is completely similar to a passive one with a well chosen interaction pair
potential. This can be see upon integrating Eq. (4.127) over all the self-propulsion degrees
of freedom. Indeed, the structure of the n-point position-space distribution functions is the
same as in an in�nite-dimensional passive �uid with rescaled temperature and pairwise
potential Ûp(h) chosen such that the dilute two-point function is reproduced, i.e.

e−β̂Ûp(h) = g0(h) . (4.139)
This analytically supports the relevance of the Baxter model [11] as a proxy for analyzing of
the structure of active �uids as suggested in [81]. Equation (4.139) indeed de�nes a dressed
Baxter potential Ûp(h),

β̂Ûp(h) =





+∞ if h < 0 ,

− U0 if 0 < h < ĥ ,

− ln

(
1

2

(
1 + erf

(√
h
))

+
e−h√
4πh

)
if h > ĥ ,

(4.140)
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with U0 → ∞ and ĥ → 0 such that ln ĥ + U0 = 1/2 in order to account for the delta
peak accumulation. Now, the behavior of standard in�nite dimensional equilibrium �uids
as the one de�ned by Eq. (4.140), in particular regarding the glass transition [169], is well
understood. In [189], Sellito and Zamponi showed using the Franz-Parisi potential approach
that colloidal particles interacting through a Baxter potential of the type,

e−β̂Ûp(h) = θ(h) + e−αδ(h) , (4.141)

experience a dynamical glass transition at a density ϕ̂d = 2eα. Their computation can be
extended to the more general potential in Eq. (4.140). In particular, the bulk part of the
potential does not modify the value of the predicted glass transition, as we show in App. C.
Therefore, an equilibrium �uid with pair potential interactions given so as to reproduce the
structure of the active hard sphere �uid experiences a dynamical glass transition at ϕ̂ = 4,
which is exactly the density at which the e�ective self-propulsion of the original active hard
sphere model vanishes. Due to the delta peak attraction, the cage size at the corresponding
glass transition vanishes so that the particles are completely frozen. This is consistent
with the simultaneous vanishing of the e�ective self-propulsion speed and of the e�ective
amplitude of potential interactions that deprives the particles from all sources of motion.
Upon reversing the point of view, we also see emerging the dynamical glass transition, that,
as the name says, is a dynamical concept in equilibrium and can be approached within the
statics only through the coupling of di�erent replicas of the system à la Franz-Parisi, as a
property of a one-time observable (the e�ective self-propulsion or the e�ective amplitude of
the potential forces) computed from the stationary measure of a single system with however
an increased number of degrees of freedom.

A similar statement can be made about the sticky sphere case w0 6= 0 with however an
important modi�cation. Indeed, at a given density, the position-space structure of the active
�uid is the same as that of a passive one with a pair potential that now explicitly depends on
the density. We stress here that this feature can only be caused by multibody interactions.
In their absence, the structure of the �uid, quanti�ed by the n-body distribution functions,
would be density-independent. The glass transition of this unusual equilibrium system can
be studied once again following the work of [189]. At density ϕ̂, it remains indeed described
by a dressed Baxter pair potential with the delta peak coe�cient e−α given by,

e−α =

(
1

2
+
w(ϕ̂)√

2π

)
, (4.142)

for which we know [190] that the onset of the dynamical glass transition is given by the
solution of

ϕ̂d = 4

[
1 +

√
2w(ϕ̂d)√
π

]−1

. (4.143)

It is very puzzling that we can recognize in the above equation just a rewriting of the con-
dition µ(ϕ̂) = 0 in Eq. (4.126) for the freezing of the corresponding active system. We be-
lieve this correspondence advocates for the correctness of the physical picture we obtained
within this approximate resummation scheme. Note that in Sec. 4.1, we have indeed proved
that at �rst order in ϕ̂ the long-time MSD is directly proportional to the square of the e�ec-
tive self-propulsion v(ϕ̂). In App. D, we show that within the approximate resummation
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scheme of the present section we expect the ultraballistic limit of the di�usion coe�cient to
be proportional to v(ϕ̂)2, thus rationalizing this correspondence between the Franz-Parisi
result and the vanishing of v(ϕ̂). The computation is done in the case of purely hard spheres
but can be generalized to sticky ones. This also strongly suggests that the mean-�eld glass
transition of some out-of-equilibrium systems may be described through the Franz-Parisi
approach upon replacing the bare pair-potential by the density renormalized one extracted
from the stationary two-point distribution. It would be extremely enlightening to study this
question within the framework of dynamical mean �eld theory and to understand under
which conditions such an assertion could indeed hold beyond equilibrium.

4.3 Phase separation in e�ective equilibriummodels of
active matter: a transition driven by multibody in-
teractions

We conclude our study on the role of multibody interactions by studying the AOUPs N -
body dynamics within the Uni�ed Colored Noise Approximation (UCNA). The UCNA has
been widely used to study the behavior of active systems [51, 134, 211]. From an analytical
standpoint, the great bene�t of the UCNA, which is exact in the small persistence-time
limit, is that theN -body stationary distribution is known [134]. The impossibility to obtain
stationary distribution function of many-body active systems beyond the small persistence-
time limit has indeed plagued our understanding of these systems so far. From our point of
view, the main relevance of the UCNA approximation lies in that the many-body stationary
distribution displays multi-body interactions. It has interestingly been found that keeping
track only of the 2-body ones in the fashion of Eq. (4.3) performs poorly in reproducing the
behavior of active systems [179]. It is nevertheless not known yet if the picture provided
by the UCNA gets better upon conserving higher order interaction terms.

We attempt to give a �rst answer to this question by studying the phase behavior of the
UCNA in the large d limit. After introducing the UCNA dynamics, we show that keeping
track only of two-body interactions does not allow to account for phase separation in the
limit d → ∞, in line with the �ndings of [202]. The role of multibody interactions in
the large dimensional thermodynamics is then worked out. The computation rests on the
possibility, upon introducing additional auxiliary degrees of freedom, to map the problem
onto a purely pairwise interacting one in an extended phase space. This opens the door to
extending the results from Sec. 3.2. We �nd, in agreement with the picture drawn in Sec. 4.2,
that the structure of the �uid quanti�ed by the n-body distribution functions is the same
as that of an in�nite dimensional standard equilibrium �uid with density-dependent pair
potential that we compute explicitly. The phase diagram of the UCNA is derived. It shows
a rich phase behavior with two di�erent phases with di�erent symmetries and coexistence
regions between them.

117



Chapter 4

4.3.1 The Uni�ed Colored Noise Approximation (UCNA)

One of the standard model of active matter is the AOUPs one. Considering N interacting
particles in dimension d labeled by i ∈ J1, NK, the dynamics of the i th particle follows

ṙi = vi −
∑

j 6=i
∇iU(ri − rj) , (4.144)

where U is the pairwise interparticle potential and the active driving vi is modeled as a
d-dimensional Ornstein-Ulhenbeck process

v̇i = −vi
τ

+

√
2D

τ
ηi(t) , (4.145)

with ηi(t) a Gaussian white noise with correlations
〈
ηµi (s)ηνj (t)

〉
= δijδ

µνδ(t − s). In
the steady state, the process vi(t) is Gaussian and exponentially correlated in time with
correlation time τ . The potential U is assumed to be radially symmetric, U(r) = U(r)
with r = |r|. Introducing the momentum pi = ṙi, the dynamics Eqs. (4.144)-(4.145) can be
written as

τ ṗµi +

[
δµν + τ

∑

j 6=i
∂µ∂νU(ri − rj)

]
pνi = −

∑

j 6=i
∂µU(ri − rj) +

√
2Dηµi (t) , (4.146)

where summation over repeated indices is assumed. Equation (4.146) is at the basis of the
UCNA approximation of the AOUPs dynamics. Concretely, one drops the inertial term τ ṗµi
to get the overdamped equation of motion

[
δµν + τ

∑

j 6=i
∂µ∂νU(ri − rj)

]
ṙνi = −

∑

j 6=i
∂µU(ri − rj) +

√
2Dηµi (t) , (4.147)

understood as Stratonovich discretized. The Stratonovich prescription allows the dynamics
in Eq. (4.147) to be consistent with the original dynamics Eqs. (4.144)-(4.145) to �rst order
in τ at small persistence time. This approximation was actually not introduced �rst in
the context of active matter but to study the properties of driven dye lasers [106] that obey
similar dynamics. Interestingly, the UCNA dynamics Eq. (4.147) is an equilibrium dynamics.
Despite the complicated form of Eq. (4.147), this allows to �nd the stationary distribution
with respect to which detailed balance holds [134]:

Ps({ri}) =
1

Z
e−β

∑
i<j U(ri−rj)−βτ2

∑
i(
∑
j 6=i∇iU(ri−rj))

2

|det (1+ H)| , (4.148)

with β = D−1 and where H is a Nd×Nd matrix with coe�cients

Hiα,jβ = τ

(∑

k 6=i
∂α∂βU(ri − rk)δij − ∂α∂βU(ri − rj) [1− δij]

)
. (4.149)

The UCNA approximation is, together with the Fox approximation [62], one of the main ef-
fective equilibrium approximations of active systems interacting via pairwise forces. While
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leading to di�erent predictions at the dynamical level, the Fox approximation of Eqs. (4.144)-
(4.145) is described in the steady state by the same distribution Eqs. (4.148)-(4.149). As
mentioned above, the probability distribution in Eq. (4.148) agrees in a small τ expansion
to order O(τ) with the stationary distribution of the AOUPs dynamics Eqs. (4.144)-(4.145).
Equation (4.148) can nevertheless be treated non-perturbatively in τ and is at the basis of
our analytical study on the importance of multibody interactions in the phase diagram of
active systems. Indeed, the measure in Eq. (4.148) cannot be factorized as a product over
pair functions. As already discussed at the beginning of this chapter, we believe this to be a
generic feature of active matter systems, as can already be seen from the orderO(τ) expan-
sion of Eq. (4.148) that exhibits 3-body interactions [60], thus making their position-space
stationary distribution genuinely di�erent from that of standard equilibrium �uids.

4.3.2 The in�nite dimensional limit

Following the pioneering approach of [66] for the liquid phase of classical hard spheres,
and later successfully extended to the statics and dynamics of glassy systems [120, 136], we
study analytically the thermodynamic properties of the position space stationary measure
in Eq. (4.148) in the limit of in�nite space dimension d → ∞. The interaction potential is
assumed to be short ranged and scales as before as

U(r) = Û(h) with h = d (r/σ − 1) , (4.150)

and where σ is the diameter of a particle. In order to keep the product βU(r) �nite, the co-
e�cient β is kept �xed. Furthermore, each particle is assumed to have roughly d neighbors,
i.e. for each particle there is O(d) particles with which the rescaled interaction potential Û
is �nite

ρVd(σ)

d
= ϕ̂ , (4.151)

with ϕ̂ �nite. Lastly, the correlation time τ is scaled as τ = τ̂ /d2. Note that from Eq. (4.145),

〈
vi(t)2

〉
=

d

βτ
=
d3

βτ̂
. (4.152)

Hence, over timescales of order τ , the variations of rµi scale as O(1/d) which is the natural
length scale due to Eq. (4.150). This scaling is actually the same as that of Sec.4.1 upon
setting ζ = 1 by a rede�nition of time. In standard equilibrium �uids, where the stationary
measure is written as a product over pair functions, the e�ect of the in�nite dimensional
limit is an exact truncation (up to corrections exponentially small in the dimension) of the
virial expansion of the free energy functional to second order. As we have seen, the reason
for this simpli�cation is geometrical. Assume that two particles, say i and j, have a �nite
rescaled interaction potential Û . Then the probability that there exists a third particle such
that its rescaled interaction potential is non vanishing with both i and j becomes vanish-
ingly small as d→∞. While this geometrical argument still holds in the case under study,
it turns out that the density expansion of the free energy functional associated to Eq. (4.148)
can not be truncated exactly to any order even in the limit of in�nite space dimension due
to the presence of multibody interactions in the stationary distribution. In the remainder of
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this article, we extend the work of [66] to the stationary measure in Eq. (4.148) by express-
ing the later as a product over pair functions in an extended phase space with auxiliary
variables, thus allowing us to use the standard machinery of the Mayer expansion and of
its truncation in d→∞. This treatment is akin to the one of [136] for the dynamics of in-
teracting particle systems in which the introduction of the Janssen-de Dominicis response
�elds allows to write the dynamical partition function as a product over pair functions.

4.3.3 Absence of transition at the two body level

Before studying the full phase diagram of Eq. (4.148) we restrict in the present section our
attention to the caseN = 2. This allows to de�ne the e�ective bare pair potential Ue�(r) as

PN=2
s (r1, r2) ∝ e−βUe�(r1−r2) , (4.153)

de�ned in such a way that lim|r|→∞ Ue�(r) = 0. The e�ective pair potential also describes
the structure of a thermodynamic system in the limit of vanishing density ρ as,

lim
ρ→0

g(r) = e−βUe�(r) . (4.154)

with g(r) the two-point function. Ue�(r) can be inferred from Eq. (4.148) and was given in
[134]

Ue�(r) = U(r) + τU ′(r)2 − (d− 1)

β
ln

∣∣∣∣1 + 2τ
U ′(r)

r

∣∣∣∣− β−1 ln |1 + 2τU ′′(r)| , (4.155)

In a small τ expansion we get

Ue�(r) = U(r) + τU ′(r)2 − 2τ(d− 1)

β

U ′(r)

r
− 2β−1τU ′′(r) +O(τ 2) . (4.156)

Let us assume that the interaction potential U(r) is purely repulsive and convex. The �rst
three terms in the right-hand side of Eq. (4.156) then correspond to purely repulsive contri-
butions. The last one yields a purely attractive contribution that accounts for the activity-
induced attraction commonly referred to in active matter systems. At arbitrary τ , the ex-
pression in Eq. (4.155) however yields unphysical results for generic classes of potentials
[134] due to the appearance of negative eigenvalues in the spectrum of 1+H. This problem
is cured in the limit of in�nite dimension in which the e�ective pair potential becomes well
behaved for convex potentials at arbitrary values of τ̂ and β as one gets to leading order in
d, and using the notations introduced previously for rescaled quantities,

Ûe�(h) = Û(h) +
τ̂

σ2
Û ′(h)2 − 2τ̂

βσ2
Û ′(h)− β ln

∣∣∣∣1 +
2τ̂

σ2
Û ′′(h)

∣∣∣∣ . (4.157)

In Fig. 4.11, we plot the e�ective pair potential for di�erent values of τ̂ in the case of an
exponentially repulsive bare pair potential Û(h) = u0 e−λh (left panel) and of a harmonic
sphere one Û(h) = u0 h

2Θ(−h)/2 (right panel). At τ̂ = 0 the e�ective pair potential equals
the bare one. For large enough τ̂ > 0, the e�ective potential develops an attractive part
due to the logarithmic term in Eq. (4.157).
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Figure 4.11: E�ective pair potential for di�erent values of τ̂ for β = 1 and σ = 1. (Left)
The bare potential is taken of the form Û(h) = u0 e−λh with u0 = 1 and λ = 6. (Right)
The bare potential is taken of the form Û(h) = u0 h

2Θ(−h)/2 with u0 = 1.

Interestingly, it turns out that this e�ective pair potential, while displaying for convex
potentials an attractive part due to the logarithmic term, is not able on its own to induce
phase separation. To be more precise, let us consider a system of N particles with position
space stationary distribution retaining only the pair interactions

P ′s ({ri}) =
1

Z ′

∏

i<j

e−βUe�(ri−rj) , (4.158)

as would be the one of an equilibrium system with temperature β−1 and pair potential
Ue�(r). As said before, it is known that in the limit of in�nite space dimension the free
energy functional is truncated to second order in its density expansion,

F [ρ(r)] =

∫
dr ρ(r) (ln ρ(r)− 1)− 1

2

∫
dr dr′ ρ(r)ρ(r′)f (r, r′) , (4.159)

up to corrections exponentially small in d and with f(r) = e−βUe�(r)−1 the Mayer function.
For homogeneous systems with density ρ, the thermodynamic pressure thus reads

β
P (ϕ)Vd(σ)

d
= ϕ

(
1 +

dϕ

2
B(β̂, τ̂)

)
' d

ϕ2

2
B(β̂, τ̂) , (4.160)

with the second virial coe�cient

B(β̂, τ̂) =

∫
dh eh

(
1− e−β̂Ûe�(h)

)
. (4.161)

We assume that the pair potential is that of harmonic spheres Û(h) = (u0/2)h2Θ(−h). We
introduce the constants c1 = 2τ̂u0/σ

2 and c2 = βu0. The latter is the ratio between the
pair potential energy scale and the e�ective temperature of the τ = 0 dynamics whereas√
c1/c2 controls the ratio between the run length of the original non-interacting AOUPs

dynamics to the size of a particle, often called the Péclet number in the literature. The
e�ective potential then reads,

β Ûe�(h) =

[
c2(1 + c1)

h2

2
− c1h− ln (1 + c1)

]
Θ(−h) . (4.162)
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Hence the second virial coe�cient, seen as a function of c1 and c2, is found to be

B(c1, c2) = 1−√π exp

(
1 + c1

2c2

)
erfc

(√
1 + c1

2c2

)√
1 + c1

2c2

> 0 ∀ c1, c2 > 0 . (4.163)

Thus, the second virial coe�cent being positive in all regions of parameter space, the sys-
tem described by the stationary measure Eq.(4.158) has stable homogeneous phases in all its
parameter space for all densities in the regime de�ned by Eq. (4.151). Similar conclusions
can be derived for the potential used to construct the left panel of Fig. 4.11. E�ective pair
interactions are thus not able to account solely for phase separation. This may come as a
surprise given the shape of the e�ective pair potential in Fig. 4.11 (especially on the left
panel) that visually resembles the standard Lennard-Jones potential that is well known to
account for phase separation in equilibrium simple liquids. However, in such a system, the
depth of the attractive well of βÛ(h) can be made arbitrarily large by increasing β, i.e. by
lowering the temperature. This is not the case here as the amplitude of the attractive part of
the attractive term in Eq. (4.157) is itself proportional to β−1. Furthermore, by increasing τ̂
at �xed β, the depth of the attractive part of the e�ective pair potential can not be made ar-
bitrary large neither. As shown in Fig (4.12), the depth of the attractive well indeed saturates
in the case of the exponentially repulsive potential at large τ̂ . For the harmonic potential,
the situation is slightly di�erent as the depth of the attractive well increases with τ̂ but its
width shrinks at the same time. All in all, this is reminiscent of what we showed earlier
about the active hard spheres two-particle stationary distribution function that admits a
�nite limit (in the distribution sense) as the persistence time is sent to in�nity. We think
this observation is at the basis of the results presented in [202] about the role of multibody
interactions in active particle systems.

Figure 4.12: E�ective pair potential for di�erent values of τ̂ for β = 1 and σ = 1 and
Û(h) = u0 e−λh with u0 = 1 and λ = 6. The depth of the attractive well saturates as τ̂
increases.

4.3.4 Mapping towards a pairwise interacting system

The thermodynamics properties of the measure in Eq. (4.148) are better captured in the
grand-canonical ensemble. We introduce the grand canonical partition functional Ξ[µ] de-
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�ned by

Ξ[µ] =
+∞∑

N=0

1

N !

∫ ∏

i

dri

[∏

i

eµ(ri)

]
e−β

∑
i<j U(ri−rj)−βτ2

∑
i(
∑
j 6=i∇iU(ri−rj))

2

|det (1+ H)| ,

(4.164)
with µ(r) the generalized chemical potential. As such, the formula in Eq. (4.164) is not suit-
able for performing a standard Mayer expansion because of the multibody nature of the
stationary distribution function. In this section, we map the problem under consideration
onto a problem with purely pairwise interactions in an extended phase space. Doing so will
then allow us to use and adapt the machinery of Mayer expansions and of in�nite dimen-
sional equilibrium �uids. First, we introduce N d-dimensional vectors ψi, one attached to
each particle, and write

e−
βτ
2

∑
i(
∑
j 6=i∇iU(ri−rj))

2

=

∫ ∏

i

ddψi

(2π)d/2
e−
∑
i

ψ2
i

2 e−i
√
βτ
∑
i<j(ψi−ψj)·∇iU(ri−rj) , (4.165)

so that the 3-body interaction term in the left-hand side of Eq. (4.165) is represented in
terms of a two-body one. We proceed along the same lines with the absolute value of the
determinant in Eq. (4.148) that we compute through a replica calculation. First, we use the
identity valid for any real symmetric matrix H

|det (1+ H)| = lim
ε→0+

lim
n→0

Kn−1
ε , (4.166)

with

Kε =
1

|det ((1 + iε)1+ H)|

=

∫ N∏

i=1

d∏

α=1

dφαi dϕαi
2π

exp

(
−ε− i

2

∑

i

φ2
i −

ε+ i

2

∑

i

ϕ2
i

+
i

2

N∑

i,j=1

d∑

α,β=1

(
φαi φ

β
j − ϕαi ϕβj

)
Hiα,jβ

)
.

(4.167)

Hence we obtain,

Ξ[µ] = lim
ε→0+

lim
n→0

Ξε,n[µ(r)] , (4.168)

with

Ξε,n[µ] =
+∞∑

N=0

1

N !

∫ ∏

i

dri

[∏

i

eµ(ri)

]
e−β

∑
i<j U(ri−rj)−βτ2

∑
i(
∑
j 6=i∇iU(ri−rj))

2

Kn−1
ε .

(4.169)
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For n ∈ Nwith n > 1, the above formula can be evaluated by introducing for each particle
n− 1 sets of replicated �elds {φai ,ϕai }a=1,...,n−1

Ξε,n[µ] =
+∞∑

N=0

1

N !

∫ N∏

i=1

dri dξi
N∏

i=1

exp

[
µ(ri)−

n−1∑

a=1

(
ε− i

2
(φai )

2 +
ε+ i

2
(ϕai )

2

)

−1

2
ψ2
i − d

(
n− 1

2

)
ln(2π)

]∏

i<j

exp
[
−βU(ri − rj) + i

√
βτ(ψi −ψj)∇U(ri − rj)

+
iτ

2

n−1∑

a=1

[(
φa,αi − φa,αj

) (
φa,βi − φa,βj

)
−
(
ϕa,αi − ϕa,αj

) (
ϕa,βi − ϕa,βj

)]
∂α∂βU(ri − rj)

]
,

(4.170)

where we used the reduced notation ξi for the set of auxiliary �elds {ψi,φ
a
i ,ϕ

a
i } attached

to particle i with

dξi = dψi

n−1∏

a=1

dφai dϕ
a
i . (4.171)

At the end, we take the limit n → 0. The validity of the method depends on whether it is
possible to analytically continue the function from larger than one integers to n = 0. Ξn[µ]
is �nally promoted from a functional of the chemical potential µ(r) to a functional of the
generalized chemical potential j(r, ξ) as

Ξn[j] =
+∞∑

N=0

1

N !

∫ N∏

i=1

dri dξi

[
N∏

i=1

ej(ri,ξi)
]∏

i<j

(
1 + f(ri, ξi; rj, ξj)

)
, (4.172)

where the Mayer function can be read from Eq. (4.170)

1 + f(ri, ξi; rj, ξj) = exp
[
−βU(ri − rj) + i

√
βτ(ψi −ψj)∇U(ri − rj)

]

exp

[
iτ

2

n−1∑

a=1

[(
φa,αi − φa,αj

) (
φa,βi − φa,βj

)
−
(
ϕa,αi − ϕa,αj

) (
ϕa,βi − ϕa,βj

)]
∂α∂βU(ri − rj)

]
.

(4.173)

Hence we managed to express Ξ[µ] in terms of the grand-canonical partition function of a
model with only pairwise interactions. The cost is the introduction of these auxiliary �elds
attached to each particle. The gain is the possibility to resort to Mayer expansion and mean
�eld theory of simple �uids. In App. E, in a completely di�erent context, we show that such
a replica representation of the absolute value of a determinant can be used to recover the
results of [70] about the number of stationary points in a family of large random dynamical
system. Alternatively, instead of the replicated �elds, and following [69], one could use a
mix of complex and Grassmann variables to represent the absolute value of the determinant
in Eq. (4.148). In the present case we however found this interesting approach to be less
fruitful.

124



Active matter in infinite dimension

4.3.5 The free energy functional

In standard liquid theory, the free energy, seen as a functional of the one-body density �eld,
is de�ned as the Legendre transform of the logarithm of the grand canonical partition func-
tion with respect to the chemical potential µ(r). However in the present case Eq.(4.172),
both the physical generalized chemical potential and the Mayer function are complex val-
ued. The construction of the free energy functional can however be adapted using the graph
expansion we showed in Sec. 3.2. Let ρ(r, ξ) be the one-body density associated to Ξn[j].
It is indeed clear that both Eq. (3.64) and Eq. (3.73) hold in the present case upon replacing
µ(r) by j(r, ξ). We can then use the linked cluster theorem to state that

ρ(r, ξ) = eh(r,ξ) , (4.174)

with
h(r, ξ) = j(r, ξ) + Σ[j] (4.175)

and Σ[j] the sum over all the connected diagrams with a unit-valued white vertex which
is not an articulation one and black ej vertices. The above relation can be inverted as in
the standard liquid case to obtain j(r, ξ) as a function of h(r, ξ). Following the notations
introduced in Sec. 3.2, we denote it j∗[h](r, ξ) that reads

j[h]∗(r, ξ) = h(r, ξ)− Σ̂[ρ] (4.176)

with Σ̂[ρ] the sum over all one-particle irreducible diagrams with ρ(r, ξ) black vertices and
one white unit-valued one. We thus introduce as before, for a given generalized chemical
potential j(r, ξ), the free energy functional

G[h] = −W [j∗[h]] +

∫
drdξeh(r,ξ)j∗[ρ](r, ξ)−

∫
drdξeh(r,ξ)j(r, ξ) , (4.177)

with W [j] the sum over all connected diagrams with ej vertices. It has by construction the
same graph expansion as its standard liquid counterpart Eq. (3.72)

G[h] =

∫
drdξeh(r,ξ) [h(r, ξ)− 1− j(r, ξ)]

− 1

2

∫
dr dξ dr′ dξ′ eh(r,ξ)eh(r′,ξ′)f(r, ξ; r′, ξ′) + . . . ,

(4.178)

where the . . . stand for a summation over all the remaining one-particle irreducible dia-
grams with ρ(r, ξ) vertices. The functional G is such that the stationarity condition

δG[h]

δh(r, ξ)
= 0 (4.179)

yields the �eld h(r, ξ) that solves Eq. (4.175), i.e. the �eld h(r, ξ) such that eh(r,ξ) is the
physical one-body density at chemical potential j(r, ξ). Hereafter, we denote by j(r, ξ) the
generalized chemical potential which corresponds to the UCNA dynamics and that reads
in a homogeneous phase with µ(r) = µ = cst

j(r, ξ) =µ− ψ
2

2
− d

(
n− 1

2

)
ln (2π)− ε− i

2

n−1∑

a=1

(φa)2

2
− ε+ i

2

n−1∑

a=1

(ϕa)2

2
,

≡µ+ j(ξ) .

(4.180)
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In the limit of in�nite spatial dimension, the density expansion of the free energy functional
is truncated at second order,

G[h] =

∫
drdξeh(r,ξ) [h(r, ξ)− 1− j(r, ξ)]

− 1

2

∫
dr dξ dr′ dξ′ eh(r,ξ)eh(r′,ξ′)f(r, ξ; r′, ξ′) .

(4.181)

Therefore, the physical one-body distribution ρ∗(r, ξ) obeys the stationarity equation

δG
δh(r, ξ)

= 0 ⇒ ρ∗(r, ξ) = e j(ξ) exp

(∫
dr′dξ′ρ∗(r′, ξ′)f(r, ξ; r′, ξ′)

)
. (4.182)

Equation (4.182) can’t nevertheless be solved analytically. Fortunately, as explained in [120]
in the context of glassy physics, the details of the physical one-body distribution ρ∗(r, ξ),
or equivalently the details of the physical h∗(r, ξ), are not needed to predict the phase
diagram of the system nor its structure factor. Indeed, to leading order in the dimension
d, the free energy functional G[h] depends only on a restricted number of moments of the
distribution ρ(r, ξ). The macroscopic properties of the system under study can therefore be
infered from a stationarity condition on this set of moments instead of dealing with the full
distribution that generates them. This will be the object of the next three sections. Before
diving into these aspects, let us assume for a moment that we know the physical density
�eld, i.e. that we know the physical h∗(r, ξ) solution to Eq. (4.182). Let us also assume that
the corresponding phase is homogeneous with density ρ so that the solution can be put
under the form

h∗(r, ξ) = ln ρ+ Γ∗(ξ) with
∫

dξ eΓ∗(ξ) = 1 , (4.183)

with the one-body distribution that reads

ρ∗(r, ξ) = ρ eΓ∗(ξ) with
∫

dξ ρ∗(r, ξ) = ρ . (4.184)

The two-point function ρ(2) of the system, or accordingly its structure factor, can then be
computed from the Ornstein-Zernike equation, see Sec. 3.2.6,

ρ(2)(r, ξ, r′, ξ′) = ρ2 eΓ∗(ξ)eΓ∗(ξ′) (1 + f(r, ξ, r′, ξ′)) , (4.185)

and we can derive from it the position space two-point function of the system

g(r) =

∫
dξ dξ′eΓ∗(ξ)eΓ∗(ξ′) (1 + f(0, ξ, r, ξ′)) . (4.186)

It is thus expected that the two-point position-space function of the systems depends on the
density in a non trivial way. Remark that higher order n-point correlation functions in the
(r, ξ) space are inferred from Eq. (4.185) using the pair structure Eq. (3.125) of standard in-
�nite dimensional �uid. Finally, we note that at the physical one-body distribution Γ∗[ρ](ξ)
(where the notation stresses the density dependence of the auxiliary �elds distribution), the
volumic free energy g(ρ) of a homogeneous phase of density ρ thus reads

g(ρ) = [ρ (ln ρ− 1)− ρ µ]− ρ2

2

∫
dr (g[ρ](r)− 1) + ρ

∫
dξ eΓ∗[ρ](ξ) [Γ∗[ρ](ξ)− j(ξ)] ,

(4.187)
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which di�ers from the conventional expression of the free energy of pairwise interacting
systems in in�nite dimension in, �rst, that the pair-correlation function in position space
may depend on the density and, second, because the Kullback-Liebler divergence of the
distribution eΓ∗(ξ) with respect to the distribution ej(ξ) appears explicitly, thus accounting
for the entropy of the auxiliary degrees of freedom.

4.3.6 Scaling of the one-body distribution

We start by investigating the behavior of the solution of Eq. (4.182). In particular, we take
advantage of the scalings described in Sec. 4.3.2 to elucidate the scaling form of the solution
of Eq. (4.182). From the latter equation, we have

Γ∗(ξ) =µ− ln ρ− d
(
n− 1

2

)
ln 2π − ψ

2

2
− 1

2

n−1∑

a=1

[
(ε− i) (φa)2 + (ε+ i) (ϕa)2]

+ ρ

∫
dr dξ′eΓ∗(ξ′)f(0, ξ; r, ξ′) ,

=µ− ln ρ− d
(
n− 1

2

)
ln 2π − ψ

2

2
− 1

2

n−1∑

a=1

[
(ε− i) (φa)2 + (ε+ i) (ϕa)2]

+ ρVd(σ)

∫
dh eh dr̂

Ωd

dξ′eΓ∗(ξ′)f(0; ξ;h, r̂, ξ′) .

(4.188)

We rescale the auxiliary variables according to ξ →
√
d ξ̂. We furthermore de�ne

Γ̂(ξ̂) = d

(
n− 1

2

)
ln d+ Γ∗(

√
d ξ̂) , (4.189)

so that the distribution Γ̂ is well normalized,

∫
dξ̂ eΓ̂(ξ̂) = 1 . (4.190)

In the following we drop the hat superscript over ξ̂ but hereafter the auxiliary �elds always
are understood to be the rescaled ones. We �rst make use of

∂α∂βU(r) =
U ′(r)

r
δαβ +

(
U ′′(r)− U ′(r)

r

)
r̂αr̂β ,

' Û ′(h)

σ2
δαβ + d

Û ′′(h)

σ2
r̂αr̂β ,

(4.191)
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so that we obtain from Eq. (4.188),

Γ̂(ξ) = d

{
µ− ln ρ

d
−
(
n− 1

2

)
ln (2πd)− ψ

2

2
− 1

2

n−1∑

a=1

[
(ε− i) (φa)2 + (ε+ i) (ϕa)2]

+ ϕ̂

∫
dh eh dr̂

Ωd

dξ′eΓ̂(ξ′)

[
− 1 + exp

(
−βÛ(h) + i

√
βτ̂

σ

√
d Û ′(h) (ψ −ψ′) · r̂

+
iτ̂

2

Û ′(h)

σ2

n−1∑

a=1

(
(φa − φ′a)2 − (ϕa −ϕ′a)2

)

+
iτ̂

2

d Û ′′(h)

σ2

n−1∑

a=1

((φa − φ′a) · r̂)
2 − ((ϕa −ϕ′a) · r̂)2

)]}
.

(4.192)

Since scalar products between independent unit vectors scale as d−1/2 as d→∞, we obtain
the scaling form of Γ̂,

Γ̂(ξ) = dΓ(ξ) , (4.193)

with Γ(ξ) an O(1) function. Furthermore, due to rotational symmetry, that we assume
unbroken, Γ depends only on the set of scalar products between the di�erent auxiliary
vectors, i.e. we have

Γ(ξ) = Γ(S) , (4.194)

with the (2n− 1)× (2n− 1) matrix S given by

S =




ψ2 Y1 · · · Y2(n−1)

Y1

Q
...

Y2(n−1)


 , (4.195)

and

Q =

[
φa · φb φa ·ϕb
φb ·ϕa ϕa ·ϕb

]
, (4.196)

and

Y =

[
ϕa ·ψ
φa ·ψ

]
. (4.197)

Crucially, rotational symmetry reduces the number of variables Γ depends on and makes it
�nite even in the limit d→∞. Hence, the one-body distribution function writes

ρ(r, ξ) = ρ edΓ(S) (4.198)

and therefore admits a large deviation form. Thanks to this, we are now in position to
compute the free energy functional in an analytically handleable form.
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4.3.7 Computing the free energy

In this section, we evaluate explicitly the free energy functional Eq. (4.181). We restrict
the computation of Eq. (4.181) to the space of functions respecting the homogeneity of the
associated phase in Eq. (4.183) and the scaling form Eqs. (4.193)-(4.194) to which the physical
one-body distribution belongs. We will see that due to the large deviation principle shown
in Eq. (4.198), the free energy functional does not depend on the details of the function
Γ(S) but only on the value S∗ of the matrix S at the corresponding saddle point. The result
of this computation is displayed in Eqs. (4.215)-(4.216). We decompose the free energy per
unit volume into an ideal gas part

gIG[ρ,Γ(ξ)] = dρ

∫
dξedΓ(ξ)

[
Γ(ξ) +

ψ2

2
+

(
n− 1

2

)
ln 2π +

ε− i
2

n−1∑

a=1

(φa)2

+
ε+ i

2

n−1∑

a=1

(ϕa)2

]
,

(4.199)

and an interacting part

gint[ρ,Γ(ξ)] = −dρ
2
ϕ

∫
dh eh dξdξ′edΓ(ξ)edΓ(ξ′)

∫
dr̂
Ωd

f(0, ξ;h, r̂, ξ) , (4.200)

that we evaluate separately in the following. At the saddle point Ssp of the distribution
edΓ(S), we furthermore introduce the notations

ψ2
sp = m, (4.201)

and

Qsp =

[
pab rab
rba qab

]
, (4.202)

and

Y α
sp = Zα , (4.203)

for α ∈ J1, 2(n− 1)K.

The ideal gas part

We introduce J(S) the Jacobian of the change of variables when going from the �elds ξ to
the matrix S of scalar products. Performing the change of variable in Eq. (4.199), we obtain

gIG[ρ,Γ(ξ)] = dρ

∫

S>0

dSJ(S) edΓ(S)

[
Γ(S) +

ψ2

2
+

(
n− 1

2

)
ln 2π +

ε− i
2

n−1∑

a=1

(φa)2

+
ε+ i

2

n−1∑

a=1

(ϕa)2

]
,

= dρ

[
Γ(Ssp) +

m

2
+

(
n− 1

2

)
ln 2π +

ε− i
2

n−1∑

a=1

paa +
ε+ i

2

n−1∑

a=1

qaa

]

(4.204)
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where the integration domain is restricted to positive de�nite S matrices and with Ssp the
associated saddle point as d→∞. Note that we used the normalization condition

∫
dSJ(S) edΓ(S) = 1 . (4.205)

This same normalization condition allows to simplify further Eq. (4.204). The jacobian J(S)
(see e.g. [72]) is given by

J(S) ∼
d→∞

exp

{
d

[(
n− 1

2

)
(1 + ln 2π) +

1

2
ln detS

]}
. (4.206)

Thus the normalization condition imposes at the associated saddle point

Γ(Ssp) +
1

2
Log detSsp +

(
n− 1

2

)
(1 + ln 2π) = 0 . (4.207)

Hence, the ideal gas part of the free energy reads

gIG[ρ,Γ(ξ)] = −dρ
2

[
Log detSsp + (2n− 1)−m− (ε− i)

n−1∑

a=1

paa − (ε+ i)
n−1∑

a=1

qaa

]
.

(4.208)
We see that the above expression depends only on the saddle-point matrix Ssp.

The interacting part

We start by performing the integral over r̂ so as to make the S dependence explicit in the
integrand of Eq. (4.200). From the expression of the Mayer function f , we de�ne the integral

I(ξ1, ξ2;h) =

∫
dr̂
Ωd

exp

(
i
√
βτ̂

Û ′(h)

σ

√
d (ψ1 −ψ2) · r̂ +

iτ̂

2

Û ′′(h)

σ2
d

n−1∑

a=1

[(
(φa1 − φa2) · r̂

)2

−
(

(ϕa1 −ϕa2) · r̂
)2
])

.

(4.209)
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The integral I is evaluated as follows,

I(ξ1, ξ2;h) =

∫
dr̂
Ωd

∫
dz δ

(
z −
√
d (ψ1 −ψ2) · r̂

)∫ ∏

a

dxadya δ
(
xa −

√
d (φa1 − φa2) · r̂

)

δ
(
ya −

√
d (ϕa1 −ϕa2) · r̂

)
exp

(
i
√
βτ̂

Û ′(h)

σ
z +

iτ̂

2

Û ′′(h)

σ2

n−1∑

a=1

(
x2
a − y2

a

)
)
,

=

∫
dr̂
Ωd

∫
dz

dλ

2π

∏

a

dxadya
dωa
2π

dΩa

2π
exp

(
i
√
βτ̂

Û ′(h)

σ
z +

iτ̂

2

Û ′′(h)

σ2

n−1∑

a=1

(
x2
a − y2

a

)
)

exp

(
iλ
(
z −
√
d (ψ1 −ψ2) · r̂

)
+ i

n−1∑

a=1

ωa

(
xa −

√
d (φa1 − φa2) · r̂

)

+i
∑

a

Ωa

(
ya −

√
d (ϕa1 −ϕa2) · r̂

))
,

=

∫ ∏

a

dxadya
dωa
2π

dΩa

2π
exp

(
i
∑

a

ωaxa + i
∑

a

Ωaya +
iτ̂

2

Û ′′(h)

σ2

∑

a

(
x2
a − y2

a

)
)

exp


−1

2

∣∣∣∣∣−
√
βτ̂
Û ′(h)

σ
(ψ1 −ψ2) +

∑

a

ωa (φa1 − φa2) +
∑

a

Ωa (ϕa1 −ϕa2)

∣∣∣∣∣

2

 ,

(4.210)

where the last line, obtained to leading order in d, makes explicit the coupling between
the di�erent auxiliary �elds after integration of the positional degrees of freedom r̂. In
the following, we neglect the scalar product between �elds ξ1 and ξ2 as they are drawn
independently from the same rationally invariant distribution and thus scale as O(d−1/2)
and perform the remaining Gaussian integrations. We thus obtain, following the notations
introduced in the previous section,

I(ξ1, ξ2;h) = exp


βτ̂

2

2σ4
Û ′(h)2Û ′′(h)

(
Y α

1 + Y α
2

)(
Y β

1 + Y β
2

)(
iJ +

τ̂ Û ′′(h)

σ2
(Q1 +Q2)

)−1

αβ




exp
(
−βτ̂Û ′(h)2

2σ2 (ψ2
1 +ψ2

2)
)

√
det
(
iJ + τ̂ Û ′′(h)

σ2 (Q1 +Q2)
) .

(4.211)

with the matrix J being 2(n− 1)× 2(n− 1) and given by block as

J =

[
1 0
0 −1

]
. (4.212)
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Integrating over the �elds ξ1, ξ2 thus yields the interacting part of the free energy

gint[ρ,Γ(ξ)] =− dρ

2
ϕ̂

∫
dh ehdξ1dξ2edΓ(ξ1)edΓ(ξ2)

[
− 1 + exp

(
−βÛ(h)

+
iτ̂

2

Û ′(h)

σ2

∑

a

(
(φa1)2 + (φa2)2 − (ϕa1)2 − (ϕa2)2)

)
I(ξ1, ξ2;h)

]
,

= −dρ
2
ϕ̂

∫
dh eh

{
− 1 +

exp
(
−βÛ(h) + iτ̂ Û

′(h)
σ2

∑
a (paa − qaa)− βτ̂Û ′(h)2

σ2 m
)

√
det
(
iJ + 2τ̂ Û ′′(h)

σ2 Qsp

) ×

· · · × exp


2

βτ̂ 2

σ4
Û ′(h)2Û ′′(h)ZαZβ

(
iJ +

2τ̂ Û ′′(h)

σ2
Qsp

)−1

αβ



}
.

(4.213)

In the remainder of this work, we assume that the potential Û(h) is described by a single
energy scale,

Û(h) = u0v(h) , (4.214)

with v(h) free of any parameter. As in Sec. 4.3.3 we introduce the two constants c1 =
2τu0/σ

2 and c2 = βu0 on which depends the free energy. We remind that the later is the
ratio between the pair potential energy scale and the e�ective temperature of the τ = 0
dynamics whereas

√
c1/c2 controls the ratio between the run length of the original non-

interacting AOUPs dynamics to the size of a particle, often called the Péclet number in the
literature. The free energy functional then writes

g[ρ,Γ(ξ)] = [ρ(ln ρ− 1)− µρ]− dρ

2
f(ϕ̂, Ssp) (4.215)

with

f(ϕ̂, Ssp) = Log detSsp + (2n− 1)−m− (ε+ i)
∑

a

qaa − (ε− i)
∑

a

paa

+ ϕ̂

∫
dh eh

{
− 1 +

exp
(
−c2v(h) + ic1

2
v′(h)

∑
a (paa − qaa)− c1c2

2
v′(h)2m

)
√

det (iJ + c1v′′(h)Qsp)
×

· · · × exp

(
c2c

2
1

2
v′(h)2v′′(h)ZαZβ (iJ + c1v′′(h)Qsp)

−1

αβ

)}
.

(4.216)

We remark that, as claimed earlier, the free energy functional depends only on Ssp, the
saddle-point matrix associated to the distribution edΓ(S). We are now in a position to obtain
all the information we need about the one-body distribution edΓ(S) in order to predict the
structure and the phase behavior of the UCNA model.
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4.3.8 Saddle point equations

The physical one-body distribution is characterized by a saddle-point matrix S∗ which is
found through the stationarity equation

∂Sijf(ϕ̂, S∗) = 0 . (4.217)

We denote the inverse matrix (S∗)−1 as

(S∗)−1 =




m̃ Z̃1 · · · Z̃2(n−1)

Z̃1

Q̃
...

Z̃2(n−1)


 (4.218)

with

Q̃ =

[
p̃ab r̃ab
r̃ba q̃ab

]
, (4.219)

(4.220)

and furthermore introduce the reduced notation

A = − c2v(h) +
ic1

2
v′(h)

∑

a

(paa − qaa)−
c1c2

2
v′(h)2m

+
c2c

2
1

2
v′(h)2v′′(h)ZαZβ (iJ + c1v′′(h)Q)

−1
αβ ,

(4.221)

We use the convention that indices α, β run from 1 to 2(n− 1) while indices a, b run from
1 to n− 1. We thus obtain the stationarity equations as,

m̃− 1− c1c2
ϕ̂

2

∫
dh ehv′(h)2 exp (A)√

det (iJ + c1v′′(h)Q)
= 0 , (4.222)

2Z̃α + ϕ̂c2c
2
1Z

β

∫
dh ehv′(h)2v′′(h) (iJ + c1v′′(h)Q)

−1
αβ

exp (A)√
det (iJ + c1v′′(h)Q)

= 0 ,

(4.223)

p̃ab − (ε− i) δab+
ϕ̂c1

2

∫
dh eh exp (A)√

det (iJ + c1v′′(h)Q)

[
iδabv′(h)− v′′(h) (iJ + c1v′′(h)Q)

−1
ab

− c2c
2
1v′(h)2v′′(h)2ZαZβ (iJ + c1v′′(h)Q)

−1
aα (iJ + c1v′′(h)Q)

−1
bβ

]
= 0 ,

(4.224)

q̃ab +
ϕ̂c1

2

∫
dh eh exp (A)√

det (iJ + c1v′′(h)Q)

[
iδabv′(h)− v′′(h) (iJ + c1v′′(h)Q)

−1
n−1+a,n−1+b

− c2c
2
1v′(h)2v′′(h)2ZαZβ (iJ + c1v′′(h)Q)

−1
(n−1)+aα (iJ + c1v′′(h)Q)

−1
(n−1)+bβ

]
− (ε+ i) δab = 0 ,

(4.225)
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r̃ab−
ϕ̂c1

2

∫
dh eh exp (A)√

det (iJ + c1v′′(h)Q)

[
v′′(h) (iJ + c1v′′(h)Q)

−1
a,n−1+b

+ c2c
2
1v′(h)2v′′(h)2ZαZβ (iJ + c1v′′(h)Q)

−1
aα (iJ + c1v′′(h)Q)

−1
n−1+b,β

]
= 0 ,

(4.226)

4.3.9 Replica symmetric diagonal ansatz

In this work, we restrict ourselves to the study of the stationarity equations Eqs. (4.222)-
(4.226) in the simplest possible ansatz, the replica symmetric diagonal one, i.e

Zα = 0 ,

rab = 0 ,

pab = p δab ,

qab = q δab .

(4.227)

Equations (4.223) and (4.226) are automatically solved within this ansatz. In the limit ε →
0+, we look for p = ip̂ and q = −iq̂. As n→ 0, this yields

1

m
= 1 +

ϕ̂c1c2

2

∫
dh ehv′(h)2

√
(1 + c1v′′(h)p̂)(1 + c1v′′(h)q̂)

exp
(
−c2v(h) +

c1

2
v′(h)(p̂+ q̂)− c1c2

2
v′(h)2m

)
,

(4.228)

1

p̂
= 1 +

ϕ̂c1

2

∫
dh eh

[
v′(h) +

v′′(h)

1 + c1v′′(h)p̂

]√
(1 + c1v′′(h)p̂)(1 + c1v′′(h)q̂)

exp
(
−c2v(h) +

c1

2
v′(h)(p̂+ q̂)− c1c2

2
v′(h)2m

)
,

(4.229)

1

q̂
= 1 +

ϕ̂c1

2

∫
dh eh

[
v′(h) +

v′′(h)

1 + c1v′′(h)q̂

]√
(1 + c1v′′(h)p̂)(1 + c1v′′(h)q̂)

exp
(
−c2v(h) +

c1

2
v′(h)(p̂+ q̂)− c1c2

2
v′(h)2m

)
,

(4.230)

For the sake of simplicity, we assume that the interaction potential is that of harmonic
spheres, i.e.

v(h) =
1

2
h2Θ(−h) . (4.231)

We thus obtain the following equations for the order parameters m, p̂, q̂

1

m
= 1+

ϕ̂c1c2

2

√
(1 + c1p̂)(1 + c1q̂)

∫ 0

−∞
dhh2 exp

(
h
(

1 +
c1

2
(p̂+ q̂)

)
− h2

2
c2 (1 +mc1)

)
,

(4.232)
1

p̂
= 1 +

ϕ̂c1

2

√
(1 + c1p̂)(1 + c1q̂)

∫ 0

−∞
dh

[
h+

1

1 + c1p̂

]

exp

(
h
(

1 +
c1

2
(p̂+ q̂)

)
− h2

2
c2 (1 +mc1)

)
,

(4.233)
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1

q̂
= 1 +

ϕ̂c1

2

√
(1 + c1p̂)(1 + c1q̂)

∫ 0

−∞
dh

[
h+

1

1 + c1q̂

]

exp

(
h
(

1 +
c1

2
(p̂+ q̂)

)
− h2

2
c2 (1 +mc1)

)
,

(4.234)
We remark that we could have obtained the same equation upon assuming that the matrix H
was positive-de�nite and representing its determinant with real-valued Gaussian integrals.
This suggests, together with the computation of the e�ective pair-potential Eq. (4.157), that
the matrix H is indeed positive de�nite in the large d limit, or at least that con�gurations
leading to a non-positive de�nite one are statistically negligible.

4.3.10 The free energy again

Let m∗, p∗ and q∗ be the solutions of the stationarity equations (4.232)-(4.234). These are
functions of the density ϕ̂, even though the argument has not been made explicit in order
to lighten notations. The physical free energy per unit volume of a homogeneous phase
can be obtained as a function of the density only by evaluating Eq. (4.215) at m∗, p∗ and q∗,
i.e.

g(ϕ̂) =
d

Vd(σ)

[
ϕ̂ ln ϕ̂+ ϕ̂ ln

(
d eµ
Vd(σ)

)
− dϕ̂

2
f(ϕ̂,m∗, p∗, q∗)

]
,

' d

Vd(σ)

[
ϕ̂ ln

(
d eµ
Vd(σ)

)
− dϕ̂

2
f(ϕ̂,m∗, p∗, q∗)

]
,

(4.235)

where the last line is obtained to leading order in d and with, from Eq. (4.216),

f(ϕ̂,m∗, p∗, q∗) = lnm∗ − ln p∗ − ln q∗ − 1−m∗ + p∗ + q∗

+ ϕ̂

[
−1 +

√
π

2c2(1 + c1m∗)
exp

(
(2 + c1(p∗ + q∗))2

8c2(1 + c1m∗)

)
erfc

(
2 + c1(p∗ + q∗)√

8c2(1 + c1m∗)

)]
.

(4.236)

In some parameter range, Eqs. (4.232)-(4.234) have multiple solutions. By de�nition,
these are all stationary points of the above expression seen as a function of m, p and q at
�xed ϕ̂. We �nd numerically that these stationary points are all local minima of the free
energy. In this case, we select the one with lowest free energy as we know is correct in
the case where the grand-canonical partition functional involves only real parameters, see
Sec. 3.2.2. The stability of these stationary points in the full replica space has however not
been analyzed in this work.

Furthermore, as is standard in thermodynamics, the non-convexity of the free energy
g(ϕ̂) seen as a function of the conserved �eld ϕ̂ indicates the occurrence of a phase separa-
tion in the system. From the second line of Eq. (4.235), we see that it is enough to study the
convexity properties of ĝ ≡ −ϕ̂f/2 as the �rst term between the brackets is linear. When
we claim to evaluate numerically the free energy in the following, note that it is actually ĝ
that we compute.
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4.3.11 The two-point function again

Before solving numerically the stationarity equations (4.232)-(4.234), we compute here the
position space two-point function. With an arbitrary pair potential v, it reads from Eq. (4.186),

g(h) =
√

(1 + c1v′′(h)p̂) (1 + c1v′′(h)q̂) exp
(
−c2v(h)− c1c2

2
v′(h)2m+

c1

2
v′(h) (p̂+ q̂)

)
.

(4.237)

The obtained result is similar to the zero density one in Eq. (4.157) with the di�erent con-
tributions but the equilibrium-like one renormalized in a density dependent way by the
coe�cientsm, p̂ and q̂. Of course, one recovers Eq. (4.157) from Eq. (4.237) and Eqs. (4.232)-
(4.234) as ϕ̂→ 0.

4.3.12 Phase diagram of the UCNA

Equations (4.232)-(4.234) are solved numerically. We restrict our subsequent study to c2 =
1 and we vary c1. This amounts to varying the persistence time of the original AOUPs
dynamics while working at β constant. The impact of βu0, i.e. the ratio between the energy
scale of the potential over the temperature of the τ → 0 dynamics, on the phase diagram
of the UCNA approximation is an interesting question left for future work.

For all c1, and at small density ϕ̂, Eqs.(4.232)-(4.234) have a single solution characterized
by a high degree of symmetry m = p̂ = q̂. We remark that the p̂ = q̂ symmetry is
expected given Eq. (4.170). At zero density ϕ̂ = 0, the solution is trivial and is given by
m = p̂ = q̂ = 1. As the density increases, the three coe�cients start to decrease. For
c1 . 3.8, two other branches of solution appear at high enough density. They are both
characterized by a breaking of the p̂ = q̂ symmetry (but are each twice degenerated because
of the p̂ ↔ q̂ correspondence). These two branches emerge from the same point but are
not connected to the original one. The free energy Eq. (4.216) of these two new branches
remains higher than that of the symmetric m = p̂ = q̂ one. The system thus selects the
latter even at these high densities. The situation is described in Fig. 4.13 for c1 = 3. The
original fully symmetric branch is depicted in blue. The two new branches appearing at
ϕ̂ & 8 are drawn in orange and green. For these two degenerates branch, there is one
solution with p̂ selecting the high value and q̂ the low as well as another solution where
the situation is reversed.

The situation is di�erent for c1 & 3.8 in which case the green branch of Fig. 4.13 merges
onto the blue fully symmetric one thus leaving only two branches in the high density regime
which are plotted in Fig. 4.14 for c1 = 4.86. Their respective free energy is plotted in the
left panel of Fig. 4.15. The orange branch in Fig. 4.14 emerges from the blue one and thus, at
the point where the second one appears, the two branches have the same free energy. Upon
increasing the density, the free energy of the orange branch becomes lower than that of the
blue one. This corresponds to a continuous transition from the symmetric branch to the one
with broken symmetry. Upon increasing the density again, the free energy of the orange
branch crosses that of the blue one. This is the sign of a discontinuous transition from the
branch with broken symmetry to the symmetric one. This is magni�ed in the inset of the
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m

ϕ̂

p̂

ϕ̂

ĝ

ϕ̂

Figure 4.13: Solutions of the stationarity equations (4.232)-(4.234) at c2 = 1 and c1 = 3 as
a function of the density ϕ̂. (Left) The solution m. (Center) The solution p̂ (equivalently
q̂). For ϕ̂ . 8, there exists a single solution with m = p̂ = q̂ (blue). For ϕ̂ & 8, two new
branches appear (orange and green). These break the p̂ = q̂ symmetry. Along each one of
them there is one solution with p̂ selecting the high value of the branch and q̂ selecting the
low one and another solution where the reverse holds. (Right) The associated free energy
of each branch is plotted. The symmetric one remains the lowest free energy one and is
thus selected by the system.

m

ϕ̂

p̂

ϕ̂

Figure 4.14: Solutions of the stationarity equations (4.232)-(4.234) at c2 = 1 and c1 = 4.86

as a function of the density ϕ̂. (Left) The solutionm. (Center) The solution p̂ (equivalently
q̂). For ϕ̂ . 8, there exists a single solution withm = p̂ = q̂ (blue). For ϕ̂ & 8, only one new
branch appear (orange). It breaks the p̂ = q̂ symmetry. Along it there is one solution with
p̂ selecting the high value of the branch and q̂ selecting the low one and another solution
where the reverse holds.

left panel of Fig.4.15 that shows the free energy of the blue branch minus that of the orange
one. These two transitions are actually never observed except at the critical point where the
low c1 scenario of Fig. 4.13 merges into the high c1 one of Fig. 4.14 and where the two above
mentioned transitions merge in a single continuous one. Indeed, following the lowest free
energy curve as a function of the density, we see that the latter becomes non convex around
the two points at which the two branches cross each other. In the right panel of Fig. 4.15,
we plot the convex hull of the lowest free energy curve. In the parts where the lowest free
energy curve is convex we have indicated by the same color code as before the selected
branch. Dashed red regions correspond to regions of non-convexity of the free energy.
There, the system phase separates with coexisting densities given by the boundaries of these
regions. We thus see emerging the phase diagram of the in�nite dimensional UCNA within
the replica symmetric diagonal ansatz as displayed in Fig. 4.16. At low c1 . 3.8 activity, the
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ĝ

ϕ̂

ĝ

ϕ̂

Figure 4.15: (Left) Free energy of the branches as a function of the density. The free energy
di�erence of the blue branch minus that of the orange one is plotted in the inset. (Right)
Convex hull of the curve of lowest free energy. The blue and orange parts correspond to
convex regions and indicate which branch is selected by the system. In the two regions
de�ned by the dashed red lines the free energy is non-convex and the system thus phase
separates. The coexisting densities are given by the boundaries of the dashed regions. c2 =

1 and c1 = 4.86.

system is homogeneous and is described by a (p̂, q̂) symmetric phase. For c1 & 3.8 the latter
still holds at low density. Above a certain density threshold, the system phase separates into
a dense and a dilute phase. The latter is (p̂, q̂) symmetric while the symmetry is broken in
the former. Upon increasing the density the system becomes homogeneous again but in
a phase with broken (p̂, q̂) symmetry. Increasing the density again leads to a new phase
separation: the low density phase is not symmetric while the high density one is. Finally,
at high density, the system is in a symmetric homogeneous phase. As seen in Sec. 4.3.3,
the whole phase behavior is completely missed if one restricts the stationary state to two-
body interactions. We stress that it would be particularly interesting to have better insights
into the physical real space implications of these auxiliary �elds. Can we think of them
as being related to the original speed degrees of freedom of the AOUPs dynamic ? Is it
possible to distinguish with real-space observables only the symmetric phase from the one
where the symmetry is broken ? In the end of App. E, in a completely di�erent context,
we demonstrate that a formally similar symmetry breaking accounts for the exponential
growth of stationary points in a family of random dynamical systems.

4.4 Conclusion

Let us now add some concluding remarks to this work on active matter in in�nite dimen-
sion. Some common features emerged from Sec. 4.2 and Sec. 4.3. First, in both case, the
�uid structure, described by its n-point distribution functions, is equivalent to that of a
standard equilibrium �uid with density dependent pair potential. This renormalization of
the structure with the density is a signature of the steady state multibody interactions. Sec-
ond, in the Kirkwood approximation of the RTP system, the self-propulsion velocity never
vanishes and nor does the system undergo phase separation. Accordingly, in the UCNA
approximation, keeping track only of two-body interactions prevents to account for the
rich phase behavior of the system. This advocates for the generic importance of multi-
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homogeneous symmetric

homogeneous with broken
symmetry

phase coexistence (p.c.)

p.c.

Figure 4.16: Phase diagram of the UCNA within the replica symmetric block diagonal
ansatz. It displays two regions of homogeneous phases with di�erent symmetries: one
with the p̂ = q̂ symmetry and one where this symmetry is broken (Orange). These are
separated by two regions of phase coexistence (p.c.) with coexisting densities given by the
boundaries of the turquoise domains (Turquoise). The critical point is located at c1 ' 3.8

and ϕ̂ ' 4.8.

body interactions at least at the mean-�eld level. Further insights could be gained in the
future by applying the ideas of [142] to the UCNA and the RTP dynamics. In this work,
inspired from an earlier proposal of [118], the authors study a slightly modi�ed version of
the standard equilibrium dynamics of pairwise interacting colloids with the pair interac-
tion ∇riU(ri − rj) replaced by ∇U(ri − rj − Aij) with Aij = Aji a symmetric matrix of
zero mean independent and identically distributed random vectors. When the variance of
their norm becomes of the order of the system size, the system becomes mean-�eld like.
As in the large d limit indeed, if particle i interacts with particle j and k then it is highly
unlikely that particles j and k interact together. In fact, it can be proven that the system is
then equivalent to its in�nite dimensional counterpart, at least in equilibrium. These model
have the great advantage to introduce a continuous parameter that allows to go from the
standard regime to the mean-�eld one (the typical size of the vectors Aij) and are amenable
to numerical simulations.

To conclude, we attempt to paint a broader picture. Sec. 4.3 suggests that if the many-
body stationary distribution can be mapped, in an extended space, onto one with pairwise
structure then the structure of the �uid will be (provided correct scalings can be taken)
that of an equilibrium one with density dependent pair potential. Both Sec. 4.2 and Sec. 4.3
however show that there is no immediate recipe to predict the way interactions renormalize
the two-point function. This scenario is actually a very generic one as such a mapping can
indeed always be found in systems in which the dynamics is described in terms of pairwise
forces. Consider the dynamical equations,

ṙi = ηi(t)−
∑

j 6=i
∇riU(ri − rj) , (4.238)

where the ηi(t) are assumed to be independent and identically distributed noises. Then,
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from any initial distribution P0, the stationary distribution PN can be obtained as

PN({ri}) = lim
T→∞

∫ ∏

i

dr0
iP
[
{ri} |

{
r0
i

}
;−T

]
P0(
{
r0
i

}
) , (4.239)

with P [{ri} | {r0
i } ;−T ] the transition probability to go from {r0

i } at time −T to {ri} at
time 0. Upon introducing the standard MSRJD response �elds, the N -body stationary dis-
tribution reads

PN({ri}) = lim
T→∞

∫ ∏

i

Dr̂iDri dr0
i P0(

{
r0
i

}
) exp

[
−i
∫ 0

−T
r̂i ·
(
ṙi +

∑

j 6=i
∇riU(ri − rj)

)]
×

· · · ×
〈

exp

(
i

∫ 0

−T
r̂i · ηi

)〉

η

.

(4.240)

Therefore, in this extended space comprising the trajectories of the original and of the
response �elds, the stationary distribution indeed has a pairwise structure (this becomes
manifest upon choosing an initial distribution that has itself such a structure). This is at the
basis of the derivation of the DMFT equations [2, 136]. However, in this framework, �nding
the two-point function amounts at solving the DMFT equations in the stationary state, a
task which in general is out-of-reach. There also remain many open questions regarding to
what extent does the two-point distribution function, if known, contain all the information
needed to predict the behavior of the system. On the one hand, Sec. 4.2 suggests that the
Franz-Parisi construction might actually be extended to some out-of-equilibrium dynamics
with multibody interactions in steady for predicting their dynamical glass transition in
in�nite dimension. It would be nice to see if the DMFT framework can bring us insights
into the validity of this statement. On the other hand, the actual free energy of the system
is in general not given by that of its equilibrium pairwise interacting counterpart. As can
be seen in Eq. (4.187), contributions coming from the entropy of the auxiliary degrees of
freedom also have to be taken into account so that the position-space pair distribution alone
does not control all the phase behavior of the system.
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Conclusion

We now conclude this part devoted to the study of the collective behavior of self-propelled
particle systems. In Chap. 2, we have studied the case of one particle in an external potential.
This case in which the complexity is reduced as much as possible is the �rst building block
of our understanding of more complex macroscopic properties. We have �rst worked out
the deviations from equilibrium in a model of AOUP at low persistence and in the presence
of thermal noise. We have demonstrated a non-trivial interplay between the active and
the thermal noises as it appears that increasing temperature does not generically push the
system closer to equilibrium. We have then derived the properties of a single RTP �rst in
a one-dimensional con�ning potential and second around a �xed spherical obstacle. These
results illustrate the repulsion-induced attraction often referred to in active matter systems.

The remainder of our work was devoted to studying the collective properties of assem-
blies of self-propelled particles interacting via pairwise forces with a particular emphasis
on the stationary state. These systems are known to combine the hurdles of nonequilib-
rium physics with those of strongly correlated liquids. The strategy we adopted in this
manuscript was to use the limit of in�nite dimension. The latter has indeed proven in the
past to be a powerful tool to study the statics of equilibrium �uids [68] and the dynamics
of generic dynamical systems interacting with pairwise forces [2]. We started by studying
the Dynamical Mean Field Theory equations in the dilute limit for a generic class of sticky
sphere potentials. In particular, we proved the proportionality, to �rst order in the density,
between the long-time mean square displacement of a particle and the square of the e�ec-
tive velocity. We then studied these systems beyond the dilute limit which brought us to
focus on the role of multibody interactions in the steady state. Their existence makes the
stationary distribution of active matter systems genuinely di�erent from that of standard
equilibrium �uids. In an approximate resummation scheme of the BBGKY hierarchy pre-
sented in Sec. 4.2, we have computed the density dependence of the e�ective self-propulsion
and of the radial pair distribution function of RTPs interacting via a sticky sphere poten-
tial. We have also introduced the notion of e�ective amplitude of potential interactions.
In the purely hard sphere case, we have shown that, within this approximation, the pair
correlation function is given by its dilute limit counterpart and that, in agreement with
numerical simulations performed on �nite dimensional systems [196], the e�ective self-
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propulsion linearly decays with the density. This is however not a dilute limit result since
the proposed resummation is non-perturbative in the density. For a generic sticky-sphere
potential, we have shown that the spatial structure of the active �uid is the same as that of a
passive one with a density dependent interaction potential. Remarkably, both the e�ective
self-propulsion and the e�ective amplitude of potential interactions vanish at a crowding
density ϕ̂cr that equals the dynamical glass transition density ϕ̂d of the equilibrium col-
loidal system with an equivalent spatial structure. We pursued our investigation in Sec. 4.3
on the role of multibody interactions in the steady state by studying the phase behavior of
the Uni�ed Colored Noise Approximation of the AOUPs dynamics. Similarly to what we
showed in Sec. 4.2, the spatial structure is similar to that of a passive �uid with a density
dependent interaction potential. Furthermore, we obtained the rich phase diagram of the
UCNA that displays two regions of phase separation and showed that an approximation
keeping only track of two-body interactions could not account for it. We believe this ad-
vocates for the generic importance of multibody interactions in nonequilibrium systems as
recently claimed in the case of three-dimensional ABPs [202].

This work leaves many open questions ahead of us. The relation between �rst the
mean-square-displacement and second the e�ective self-propulsion remains to be properly
understood. This would open the way towards a �ner understanding of the links existing
between the dynamical glass transition of equilibrium systems on the one side and the
vanishing of the e�ective self-propulsion speed in active systems on the other. Our work
suggests that some connection exists, at least at the mean-�eld level. Lastly, to what extent
does the in�nite dimensional phenomenology survives in two or three dimensional systems
remains a debated issue [95] and deserves to be better understood in, and outside of, the
context of active matter.
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Introduction

Take a Langevin equation for a one-dimensional stochastic process x(t) with multiplicative
noise, whose generic form is

dx

dt
= f(x(t)) + g(x(t))η(t) , (6.1)

where η is a Gaussian white noise with correlations 〈η(t)η(t′)〉 = δ(t − t′). It is a well-
known feature of this equation that it must be considered with great care as the process
x(t) is not di�erentiable. One way to endow Eq. (6.1) with a well-de�ned mathematical
meaning is to consider the in�nitesimal increment of x between t and t+ ∆t, for ∆t→ 0,

x(t+ ∆t)− x(t) = ∆x = f (x(t)) ∆t+ g (x(t) + α∆x) ∆η , (6.2)

with 0 ≤ α ≤ 1 and where ∆η is a zero mean Gaussian variable of variance ∆t. This is
known as theα-discretization scheme and each value ofα generates a di�erent process. The
α = 0 scheme is known as the Itō one, α = 1/2 as the Stratonovich one, and α = 1 as the
Hänggi-Klimontovich one. Such an equation as Eq. (6.1) usually appears, in physics, after
some coarse-graining procedure consisting in integrating out degrees of freedom of no di-
rect interest. It also requires the existence of a separation of space and time scales between
the degree of freedom of interest and the surrounding environment. It is the Markov ap-
proximation according to which the relaxation of the environment occurs over time scales
much smaller than that of the degree of freedom of interest that is responsible for η to be δ
correlated and therefore for the process x not to be di�erentiable. When the Markov limit is
carefully taken in an equation of the form of Eq. (6.1) with a correlated noise, the increment
of x between t and t + ∆t is shown to be given by the Stratonovich α = 1/2 scheme. Of
course, a process expressed in one of the α-discretized forms can always be expressed in
terms of another α-discretized one,

dx

dt
α
= f(x) + g(x)η ⇐⇒ dx

dt
α′
= f(x) + (α− α′)g′g + g(x)η , (6.3)

where the the α
= symbol means that the continuous-time equation must be understood

according to the α-discretization of Eq. (6.2).
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Given a smooth function u(x), the process U(t) = u(x(t)) also evolves according to a
Langevin equation. However, it is only when Eq. (6.1) is understood with the Stratonovich
scheme that the usual chain rule of di�erential calculus holds and that

dx

dt

1/2
= f(x) + g(x)η =⇒ dU

dt

1/2
= F (U) +G(U)η , (6.4)

where F (U(t)) = u′f and G(U) = u′g. Instead, when Eq. (6.1) is understood in the Itō
scheme, one has to use the celebrated Itō formula,

dx

dt
0
= f(x) + g(x)η =⇒ dU

dt
0
= u′

dx

dt
+

1

2
u′′g2 , (6.5)

While a discussion of the discretization scheme is irrelevant at the level of Eq. (6.1) when-
ever g is a constant (namely for a process with additive noise), it becomes a requirement
when studying the evolution of a nonlinear function of x, as seen in Eqs. (6.4) and (6.5).

Physical approximations (coarse-graining and the Markov limit) need not be imple-
mented at the level of the equations of motion. They can instead be applied to, say, a
Liouville equation. In the Markov approximation, this results in a master equation, which,
in the di�usive limit, is known as the Fokker-Planck (or as the Kolmogorov forward equa-
tion or the Smoluchowski equation). Instead of tracking individual �uctuating trajectories
generated by Eq. (6.1) one focuses on the probability density P (x, t) of the random process
x(t) and arrives at an equation of the form

∂tP = −∂x(fP ) +
1

2
∂2
x(g

2P ) , (6.6)

which describes the same process as the one evolving according to Eq. (6.1) understood in
the Itō sense with α = 0. Within the framework of quantum mechanics in which random-
ness is intrinsic, i.e. not resulting from a loss of information, probability amplitudes are
obtained from the Schrödinger equation. The latter, for a particle in a potential, also takes
the form of a linear �rst-order in time, second-order in space, partial di�erential equation.
This formal resemblance explains that tools developed in stochastic processes can be useful
in quantum mechanics, and vice versa. Interestingly, there have even been attempts to cast
quantum mechanics within the Langevin language [160].

This brings us to the topic of this work. There is a third description of random processes
based on path integrals where the fundamental object is the probability distribution over
random trajectories. Originally Wiener [208, 209] built them to analyze the properties of
Brownian motion, but they became a central tool of theoretical physics after Feynman [52]
reformulated quantum mechanics in terms of path integrals. After the work of Onsager and
Machlup [165, 132], they became a cornerstone in the study of classical irreversible pro-
cesses. In much the same way as in Langevin equations, in path integrals one manipulates
non-di�erentiabile trajectories, and this comes with its share of mathematical di�culties
�rst raised by Edwards and Gulyaev [45]. These are the ones we would like to discuss now.
We begin by illustrating one of them by an example.
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6.0.1 A Brownian particle

Consider a large particle of mass m in water, whose motion is modelled by the Langevin
equation

m
dv

dt
= −γv +

√
2γTη, 〈η(t)η(t′)〉 = δ(t− t′) , (6.7)

where γ is the friction coe�cient and T is the temperature of the water bath. Starting from
an initial condition where v(0) = 0, the probability of observing a velocity v at time t can be
obtained from a summation over all velocity trajectories going from v(0) = 0 to v(t) = v:

P (v, t|0, 0) =

∫ v(t)=v

v(0)=0

Dv exp

[
− 1

4γT

∫ t

0

dτ

(
m

dv

dt
+ γv

)2
]
. (6.8)

As for Langevin equations, expressions such as Eq. (6.8) acquire an unequivocal meaning
when a discretization scheme is provided. Here we must understand Eq. (6.8) as the ∆t→ 0
limit of

t/∆t−1∏

i=1

(
m√

4πγT∆t

)
dvi → Dv , (6.9)

along with

∆t

t/∆t−1∑

i=0

(
m
vi+1 − vi

∆t
+ γvi

)2

→
∫ t

0

dτ

(
m

dv

dt
+ γv

)2

, (6.10)

with v0 = 0 and vt/∆t = v. These discretized expressions are the direct analogs of the Itō
discretized form of the Langevin equation. Similarly, other schemes could be used, such as
the Stratonovich one, leading to

P (v, t|0, 0) =

∫ v(t)=v

v(0)=0

Dv exp

[
− 1

4γT

∫ t

0

dτ

(
m

dv

dt
+ γv

)2

+
γ

2m
t

]
, (6.11)

with
t/∆t−1∏

i=1

(
m√

4πγT∆t

)
dvi → Dv , (6.12)

and

∆t

t/∆t−1∑

i=0

(
m
vi+1 − vi

∆t
+ γ

vi + vi+1

2

)2

→
∫ t

0

dτ

(
m

dv

dt
+ γv

)2

. (6.13)

While discretization issues are irrelevant for Langevin processes with additive noise, they
play a manifest role for the corresponding path integral formulations, as can be seen from
the di�erence between Eqs. (6.8) and (6.11).

We now ask about the statistics of the kinetic energy K = m
2
v2 of the particle and we

denote by Q(K, t|0, 0) its probability density. At the level of Langevin equations the rules
of stochastic calculus allow us to write that

dK

dt

1/2
= − 2γ

m
K +

√
4γTK

m
η ,

0
=− 2γ

m
K +

γT

m
+

√
4γTK

m
η .

(6.14)
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Regarding the corresponding path-integral formulation, in the Itō scheme,

Q(K, t|0, 0) =

∫
DK e−

m
8γT

∫ t
0 dτ 1

K (dK
dτ

+ 2γ
m
K− γT

m )
2

, (6.15)

where
t/∆t−1∏

i=1

(√
m

8πγT∆tKi

)
dKi → DK ,

∆t

t/∆t−1∑

i=0

1

Ki

(
Ki+1 −Ki

∆t
+

2γ

m
Ki −

γT

m

)2

→
∫ t

0

dτ
1

K

(
dK

dτ
+

2γ

m
K − γT

m

)2

,

(6.16)

while in the Stratonovich one,

Q(K, t|0, 0) =

∫
DKe

− m
8γT

∫ t
0 dτ

[
1
K (dK

dτ
+ 2γ
m
K)

2
+ 2γT
mK

dK
dτ
− γ2T2

m2K

]
+ γt

2m , (6.17)

where
t/∆t−1∏

i=1

(√
m

4πγT∆t(Ki +Ki+1)

)
dKi → DK ,

∆t

t/∆t−1∑

i=0

[
2

Ki +Ki+1

(
Ki+1 −Ki

∆t
+
γ

m
(Ki +Ki+1)

)2

,

+
4γT

m(Ki +Ki+1)

Ki+1 −Ki

∆t
− 2γ2T 2

m2(Ki +Ki+1)

]
,

→
∫ t

0

dτ

[
1

K

(
dK

dτ
+

2γ

m
K

)2

+
2γT

mK

dK

dτ
− γ2T 2

m2K

]
. (6.18)

At the Langevin level, the Stratonovich discretization is consistent with di�erential calculus
and switching from v to K can be done as if these functions were di�erentiable. However
naively changing path from v to K starting from Eq. (6.11) would not lead to the correct
expression Eq. (6.17) (the last two terms in the time integral would be absent). Similarly,
using the Itō formula from Eq. (6.8) does not lead to the correct Itō discretized action for K
shown in Eq. (6.15).

This simple example allows us to phrase the questions of interest throughout this work.
Starting from an action in the Itō (or Stratonovich) form, can we extend the Itō lemma to
path-integral calculus (without using Langevin equations as intermediate steps)? Is there
a discretization scheme that allows to deal with functions in path integrals as if these were
di�erentiable? These are really the two sides of the same coin: either one sticks to a given
discretization and then the rules of di�erential calculus have to be adapted, or one im-
poses di�erential calculus to hold, but this requires �nding the appropriate discretization
schemes. Such questions have already been addressed and answered in the past. We re-
view the existing literature, and further bring to the fore alternative answers to these old
questions.
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6.0.2 Motivations and outline

We have just illustrated the core of the mathematical problem we want to address. These
technical aspects of path integrals are of interest in a wide array of sciences. Indeed,
stochastic processes are ubiquitous in mathematical descriptions of the physical world. In
situations where one focuses on a subset of degrees of freedom, information is lost, and this
results in e�ective randomness. This applies to in�ationary cosmology [146, 205], climate
dynamics [85], colloidal particles in solvents [46], Bose-Einstein condensates [43], to name
but a few. Phenomena outside the realm of physics, whether option pricing or myosin dy-
namics are also described by similar tools. Going down in scale one meets the quantum
description of matter which is intrinsically random. A common mathematical tool that
pervades these areas of science are stochastic di�erential equations and their path-integral
representation. It is thus of paramount importance to understand the mathematical sub-
tleties that pave their use.

The forthcoming results are the fruit of a collaboration with L. Cugliandolo and V.
Lecomte. In Chap. 7, we review some useful results about �rst stochastic calculus in Sec. 7.1
and second path integral representation of stochastic di�erential equations in Sec. 7.2. In
Chap. 8, this will allows us to clearly identify the origin of the problems encountered when
changing variables at the level of continuous-time path integrals as already pointed out
by many authors in the literature, e.g. in [28, 124]. We next present di�erent strategies to
circumvent the problem. In Sec. 8.1, we start by showing how to extend to usual rules of
stochastic calculus of α-discretized stochastic di�erential equations in order to make them
usable for performing changes of variables within α-discretized path integrals. Then, we
present an alternative approach consisting in altering the discretization scheme of the path
integral so as to make the continuous-time expression consistent with di�erential calcu-
lus. Historically, it is DeWitt [36] who �rst proposed a covariant extension of Feynman’s
path-integral formulation of quantum mechanics on curved space. A similar construction
was then used by Graham [86, 87] for classical di�usive processes. In their formulation, the
propagator of the process between two in�nitesimally close times is expressed by means
of the continuous-time action evaluated at the least-action trajectory. This requires solv-
ing the classical equation of motion over an in�nistesimal time window with boundary
conditions at x and x + ∆x. We review these approaches in Sec. 8.2. The construction
we propose in 8.3 is based on an extension of the Stratonovich discretization of Langevin
equations. The continuous-time expressions we obtain are compatible with di�erential cal-
culus, as already achieved by DeWitt and Graham, but this covariance property extends
to the fully discretized level. Our scheme, that generalizes the work of [29], will probably
appear more familiar in spirit to statistical physicists.
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Stochastic calculus and path integrals
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This chapter is dedicated to reviewing some useful results about �rst stochastic calculus
in Sec. 7.1 and second path integral representation of stochastic di�erential equations in
Sec. 7.2. We will use them later in Chap. 8 to explain the di�culties linked to performing
changes of variables in the path integral and to show how to circumvent them.

7.1 Stochastic calculus

This section reviews stochastic calculus at the level of the Langevin and Fokker-Planck
equations without referring just yet to path integrals. The di�culties intrinsic to working
in more than one space dimension are discussed.
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7.1.1 Discretization of stochastic di�erential equations

As we shall review below, a stochastic di�erential equation involving a multiplicative noise
(one in which the noise η appears to be multiplied by a state-dependent function g, as in
Eq. (7.1) below), acquires a well-de�ned mathematical meaning once endowed with a cor-
responding discretization rule. Such equations with multiplicative noise are by no means
a rarity. For instance, the mobility of a Brownian colloid di�using in the vicinity of a wall
depends on its distance to the wall [122, 5, 78, 174, 140]. The description of rotational
Brownian motion [27] (with applications to dielectrics [129], magnetism [18], and active
matter [24]) also involves, in order to enforce a spherical constraint, a multiplicative noise.
Another celebrated example outside of the realm of physics is the Black and Scholes equa-
tion [98] proposed to model the evolution of some speci�c �nancial assets. Of course, any
non-linear transformation of a stochastic variable evolving according to a Langevin equa-
tion with additive noise evolves according to a Langevin equation with multiplicative noise,
as illustrated in our opening example, Eqs. (6.7) and (6.14). In the physical sciences, there
are mostly two channels through which such Langevin equations arise [109]. In the �rst
one, a large physical system is described by dynamical equations that couple the degrees
of freedom of interest, hereafter denoted by x(t), to some other external degrees of free-
dom referred to as a bath or an environment. Integrating out the latter generically yields
a dynamical equation for x(t) which features both colored noise and colored friction. It
is then the Markov limit, in which the relaxation time of the external degrees of freedom
is assumed to be much smaller than the typical timescale associated with the dynamics
of x(t), that de�nes the correct limiting stochastic di�erential equation and the associated
discretization rule. In the second situation, physics is fundamentally described by master
equations (derived e.g. from some Liouville equation). The correspondence between such a
level of description with a stochastic di�erential equation also �xes the proper discretiza-
tion scheme used to represent the stochastic process. Most of the discussion that follows
can be found in classic textbooks such as Van Kampen’s [108] or Gardiner’s [75].

We now consider a dynamical variable x(t) the evolution of which is assumed to be
given by a stochastic di�erential equation with multiplicative noise

dx

dt
d
= f(x(t)) + g(x(t))η(t) . (7.1)

The noise η(t) is Gaussian and white with zero mean,

〈η(t)〉 = 0 , 〈η(t)η(t′)〉 = δ(t′ − t) . (7.2)

The label d above the equal sign stands for a reminder that Eq. (7.1) comes hand-in-hand
with an accompanying discretization scheme (Van Kampen [109] refers to Eq. (7.1) as a pre-
equation). Concretely, Eq. (7.1) should be understood as the continuous-time limit, i.e. the
limit in which the time step ∆t goes to zero, of the following discrete companion evolution
rule

∆x(t) = x(t+ ∆t)− x(t) = f(x̄)∆t+ g(x̄)∆η(t) , (7.3)

where at each time step the ∆η(t) are independent and identically distributed Gaussian
variables with zero mean and variance ∆t. Notations-wise, we shall also use the discrete
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sequence of steps xk = x(k∆t), k = 0, . . . , N , N = tobs/∆t (here [0, tobs] refers to the
time window over which we sample the random process) and of independent identically
distributed Gaussian variables ∆ηk with unit variance and zero mean,

∆xk = xk+1 − xk = f(x̄k)∆t+ g(x̄k)∆ηk , (7.4)

In Eq. (7.3), f and g are evaluated at x̄, a function of x(t+∆t) and x(t), the choice of which
fully determines the discretization scheme (and x̄k is x̄where x(t) and x(t+∆t) have been
replaced with xk and xk+1). It is of paramount importance to notice that as a consequence
of Eq. (7.3), as ∆t→ 0, we have that

∆x(t) = O
(√

∆t
)
. (7.5)

Therefore, the trajectories x(t) obtained in the continuous-time limit ∆t → 0 are (almost
surely) nowhere di�erentiable. This explains why, as we will see later, the discretization
scheme of stochastic di�erential equations matters while it does not in the ∆t → 0 limit
when discretizing ordinary di�erential equations. A common scheme [103] is the so-called
α-discretization scheme in which

x̄ = x(t) + α∆x(t) , (7.6)

with α ∈ [0, 1]. The Itō or pre-point convention corresponds to α = 0 for which Eq. (7.3)
provides an explicit expression for the increment ∆x(t). It moreover guarantees the sta-
tistical independence of x(t) with respect to ∆η(t). The α = 1/2 case corresponds to the
Stratonovich or mid-point convention. The Stratonovich scheme is time-symmetric and,
as we shall see further down, it allows the usual chain rule of di�erential calculus to hold.
Finally, the α = 1 discretization scheme is called the Hanggi-Klimontovich or the postpoint
one and it has proved convenient in the study of relativistic Brownian motion [44]. In view
of performing e�cient numerical simulations, the question of �nding the "best" discretiza-
tion scheme is a very active one that goes well-beyond the present discussion. We refer the
interested reader to recent reviews in that area [153, 154, 114, 139, 115]. We emphasize that,
contrary to what holds for ordinary di�erential equations, di�erent α-discretized compan-
ion processes sharing the same f and g functions lead to di�erent stochastic processes in
the ∆t → 0 limit, and are thus characterized by di�erent distributions. This is best seen,
using Eq. (7.5), by considering, for α 6= α′, the di�erence

[g(x(t) + α∆x(t))− g(x(t) + α′∆x(t))] ∆η(t) = (α− α′)g′(x(t))∆x(t)∆η(t) +O
(
∆t3/2

)

= O(∆t) . (7.7)

Therefore, for two di�erentα-discretization schemes, the di�erence in the increments ∆x(t)
is of order O(∆t), as is the contribution to the increments of the deterministic term, and
thus cannot be neglected in the ∆t→ 0 limit. Note that, by constrast,

[f(x(t) + α∆x(t))− f(x(t) + α′∆x(t))] ∆t = O
(
∆t3/2

)
, (7.8)

which expresses that the way the deterministic term is discretized does bear any in�uence
on the ∆t → 0 limit. The sensitivity to the discretization scheme of course re�ects on the
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Fokker-Planck equation associated to Eq. (7.1) which in any α-discretization reads [74, 108,
125, 7]

∂tP (x, t) = −∂x[(f(x) + αg(x)g′(x))P (x, t)] +
1

2
∂2
x[g

2(x)P (x, t)] . (7.9)

It is a deterministic partial di�erential equation and it is thus immune to any discretization
issues. Once supplemented with an initial condition P (x, 0), this equation describes the de-
terministic evolution of the probability density P (x, t) of �nding x at time t. Equation (7.9)
can be written in the form of a continuity equation ∂tP + ∂xJ = 0 and its stationary
solution with vanishing current, J = 0, is

Pst(x) = Z−1 [g(x)]2(α−1) e2
∫ x dx′ f(x′)

g2(x′) , (7.10)

where
∫ x represents the inde�nite integral over x′ and Z is a normalization constant [74,

108]. The approach to this asymptotic form can be proven with the construction of an H-
function or with the mapping of the Fokker-Planck operator onto a Schrödinger operator
and the analysis of its eigenvalue problem [168]. That Pst depends on α and g explicitly
shows that these ingredients a�ect the stationary properties of the system [97, 182, 197].
However, if we allow ourselves to consider the special ‘drift force’ [112]

f(x) = −g2(x)V ′(x) + (1− α)g(x)g′(x) , (7.11)

the dependence on α is eliminated from the FP equation

∂tP (x, t) = ∂x

(
g2(x)[V ′(x)P (x, t) +

1

2
∂xP (x, t)]

)
, (7.12)

and no observable depends on this parameter either. The asymptotic solution of the Fokker-
Planck equation in Eq. (7.12) then reads

Pst(x) = Z−1 e−V (x) = PGB(x) , (7.13)

which is the standard Gibbs-Boltzmann distribution in the canonical ensemble, for a system
with potential energy V (x), independently of α and g.

Therefore, in order to describe the equilibrium Langevin dynamics of a multiplicative
white noise system that samples the standard Gibbs-Boltzmann distribution, one needs to
work with the following equation

dx

dt
α
= −g2(x)V ′(x) + (1− α)g(x)g′(x) + g(x)η(t) , (7.14)

using an α-prescription. Note the presence of a non-trivial additional ‘drift force’ even in
the Stratonovich (α = 1/2) prescription. It is only with a post-point prescription α = 1 [89,
90, 91, 113] that this additional drift term vanishes.

While distinct discretizations of the same continuous-time expression lead to di�erent
processes, there are conversely distinct yet equivalent ways to describe the same physi-
cal process using a Langevin equation. To be more explicit, we consider an α-discretized
stochastic di�erential equation of the form

dx

dt
α
= f(x) + g(x)η(t) , (7.15)
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which yields in discrete time

∆x = f(x)∆t+ g(x+ α∆x)∆η(t) . (7.16)

The latter evolution rule can be rewritten for any α′ ∈ [0, 1] as

∆x = f(x)∆t+ g(x+ α′∆x+ (α− α′)∆x)∆η(t) ,

= f(x)∆t+ g(x+ α′∆x)∆η + (α− α′)g′(x+ α′∆x)∆x∆η(t) +O(∆t3/2) ,

= f(x)∆t+ g(x+ α′∆x)∆η + (α− α′)g(x)g′(x)∆η(t)2 +O(∆t3/2) . (7.17)

The evolution rule in Eq. (7.17) explicitely displays a ∆η(t)2 contribution, at odds with the
original dynamics in Eq. (7.16). However, when computing the continuous-time Fokker-
Planck equation associated with the ∆t→ 0 limit of Eq. (7.17), one realizes that the ∆η(t)2

only contributes through it �rst moment 〈∆η(t)2〉 = ∆t. One can thus rewrite

∆x := f(x)∆t+ g(x+ α′∆x)∆η + (α− α′)g(x)g′(x)∆t . (7.18)

In Eq. (7.18), the := sign does not mean there is a point-wise equality between Eq. (7.17)
and Eq. (7.18) but rather that these two discrete time evolution rules generate the same
random process in the continuous-time limit. This is the �rst example of a substitution
rule, a notion that we will shortly clarify. Therefore, in the continuous time limit, we can
assert that

dx

dt
α
= f(x) + g(x)η(t) ,

α′
= f(x) + (α− α′)g(x)g′(x) + g(x)η(t) . (7.19)

This concludes our review of the most common schemes used to discretize Langevin equa-
tions. We now wish to investigate how the rules of calculus—integration and di�erentiation—
are a�ected by the singular nature of the paths generated by Langevin equations.

7.1.2 Integration

We now consider a random process x(t) evolving according to the Langevin equation

dx

dt
α
= f(x) + g(x)η(t) , (7.20)

understood as α-discretized. First, we wish to focus on observables of the form

O0 =

∫ t

0

ds h(x(s)) , (7.21)

where h is a (smooth enough) arbitrary function, which, when expressed in terms of the
discrete time companion process, writes

O0 = lim
∆t→0

N∑

k=0

∆t h(xk) , (7.22)
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where the notation xk refers to the value of x at time step number k (at time k∆t). In the
∆t→ 0 limit, one could also have written

O0 = lim
∆t→0

N∑

k=0

∆t h(xk + α′∆xk) , (7.23)

for any α′ ∈ [0, 1] with ∆xk = xk+1− xk. In other words, in the continuous time limit, the
speci�c discretization scheme of the integral in Eq. (7.21) is irrelevant, as expected for such
standard Riemann sums.

Other interesting observables that, for example, often arise in the �eld of stochastic
thermodynamics [187, 188] are of the form

O1
α′
=

∫ t

0

ẋ h(x(s)) ds , (7.24)

which in terms of the discrete time companion process reads

O1 = lim
∆t→0

N−1∑

k=0

∆t
∆xk
∆t

h (xk + α′∆xk) . (7.25)

This discretization has been made explicit above the equality sign by the α′ label appearing
in Eq (7.24). Due to the scaling ∆xk = O(

√
∆t), the discretization of the integral, namely

the point at which the function h is evaluated, is relevant even in the ∆t → 0 limit. This
statement is very similar to the fact that one needs to specify the discretization of g in the
discrete time companion process of Eq. (7.20). Note that α and α′ have nothing to do with
each other: α determines the evolution of the companion process x while α′ enters in the
de�nition of the observable O1. Integrals of the form Eq. (7.24) with α′ = 0 (respectively
α′ = 1/2) are referred to as Itō integrals (respectively as Stratonovich integrals).

To conclude this subsection devoted to integration, we wish to introduce a last class
of observables. A quantity of the form

∫ t
0

dsẋ2h(x(s)), as can often been seen in the ex-
ponential weight entering a path integral, is strictly not de�ned. However, the attached
observable O2, de�ned by its discrete expression as

O2 = lim
∆t→0

N−1∑

k=0

∆t
(∆xk)

2

∆t
h(xk) , (7.26)

is indeed �nite in the ∆t → 0 limit. Furthermore, the discretization of h is irrelevant to
de�ne the continuous time limit. We recall that

∆xk = f(xk)∆t+ g (xk + α∆xk) ∆ηk , (7.27)
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so that

O2 = lim
∆t→0

N−1∑

k=0

∆t
(f(xk)∆t+ g (xk + α∆xk) ∆ηk)

2

∆t
h(xk) ,

= lim
∆t→0

N−1∑

k=0

∆t
∆η2

k

∆t
g2 (xk + α∆xk) h(xk) ,

= lim
∆t→0

N−1∑

k=0

∆t
∆η2

k

∆t
g2 (xk) h(xk) . (7.28)

Interestingly, in the L2-norm sense, the statistical properties of O2 and O′2 de�ned by

O′2 = lim
∆t→0

N−1∑

k=0

∆t g2 (xk) h(xk) , (7.29)

are the same, as can be checked by a direct computation

lim
∆t→0

〈(
N−1∑

k=0

∆t g2 (xk) h(xk)

[
1− ∆η2

k

∆t

])2〉
,

= lim
∆t→0

〈
N−1∑

k,k′=0

∆t2 g2 (xk) g
2 (x′k) h(xk)h(x′k)

[
1− ∆η2

k

∆t

] [
1− ∆η′2k

∆t

]〉
,

= lim
∆t→0

〈
N−1∑

k=0

∆t2 g4 (xk) h
2(xk)

[
1− ∆η2

k

∆t

]2
〉

= 0 . (7.30)

This justi�es the substitution relation

∆x2
k := g2(xk)∆t , (7.31)

or equivalently,

∆η2
k := ∆t . (7.32)

Accordingly, one can show following the same reasoning that

∆x4
k = 3g4(xk)∆t

2 . (7.33)

This substitution rules allows one for example to express O1 α
′-discretized observables in

terms of O1 α
′′-discretized ones as,

O1
α′
=

∫ t

0

ẋ h(x(s)) ds,,

= lim
∆t→0

N−1∑

k=0

∆t
∆xk
∆t

h (xk + α′∆xk) ,

= lim
∆t→0

N−1∑

k=0

[
∆t

∆xk
∆t

(h (xk + α′′∆xk) + (α′ − α′′)h′(xk)∆xk) +O(∆t3/2)

]
,

:
α′′
=

∫ t

0

ẋ h(x(s)) ds+ (α′ − α′′)
∫ t

0

g2(x(s))h(x(s)) ds . (7.34)
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As a �nal comment, we stress that even though the point at which the function h is evalu-
ated is irrelevant to determine the observableO2 in the ∆t→ 0 limit, �nite ∆t corrections
to O2, if needed (and they will be needed when we address path integration), depend on
the value at which h is evaluated. Equivalently, this issue surfaces if we want to regularize
integrals of the type

∫ t
0

dsẋ2h(x(s)). Indeed, as pointed out previously, it is clear that any
observable of the form

O3 =
∑

k

∆t h(xk)

(
∆x2

k

∆t2

)
, (7.35)

only has in�nite moments when xk is sampled from the companion process associated to
Eq. (7.20) in the ∆t → 0 limit. Suppose, however, that our interest goes to the observable
de�ned by

O′3 =
∑

k

∆t h(x̄k)

(
∆x2

k

∆t2

)
−
∑

k

∆t h(xk)

(
∆x2

k

∆t2

)
, (7.36)

where x̄k is again a function of xk and xk+1 and where the diverging part in the continuous
limit has been substracted. Owing to the scaling of ∆xk, namely,

∆xk ∼
√

∆t , (7.37)

one needs to know h(x̄k) up to orderO(∆t) in order to collect all �nite terms in the contin-
uous time limit. This is in stark contrast with standard Itō or Stratonovich integrals (or any
integral of the type O1) in which the function h needs to be known up to order O(

√
∆t)

only. In particular, observables such as O3 (that we will encounter when dealing with path
integrals) are sensitive to higher-order terms in the discretization. To render this property
more explicit, we introduce an α, β discretization scheme de�ned by

x̄k = xk + α∆xk + β∆x2
k , (7.38)

which gives

O′3 =
∑

k

∆t
(
h(xk + α∆xk + β∆x2

k)− h(xk)
)(∆x2

k

∆t2

)
,

=
∑

k

∆t

(
α∆xk h

′(xk) +

(
βh′′(xk) +

α2

2
h′′(xk)

)
∆x2

k

)(
∆x2

k

∆t2

)
,

=
∑

k

αh′(xk)
∆x3

k

∆t
+
∑

k

(
βh′(xk) +

α2

2
h′′(xk)

)
∆x4

k

∆t2
∆t ,

:=
∑

k

αh′(xk)
∆x3

k

∆t
+ 3

∑

k

g4(xk)

(
βh′(xk) +

α2

2
h′′(xk)

)
∆t , (7.39)

where the last line is valid in the ∆t → 0 limit. A last comment is in order: stochastic
calculus with white, yet non-Gaussian, noise η, is another instance in which higher order
discretization schemes are required [167, 38, 37, 110, 61]. We shall say more on this in the
sections to come.

158



Stochastic calculus and path integrals

The goal of this subsection was to provide the reader with a review of stochastic inte-
gration. We have discussed four types of integral observables, O0, O1, O2 and O3 that will
each appear in the exponential weight of path integrals. We now turn to the di�erentiation
of a stochastic path.

7.1.3 Di�erentiation

The other operation that we wish to extend to stochastic paths is di�erentiation. Going
back to our intial equation

dx

dt
α
= f(x) + g(x)η(t) , (7.40)

we now de�ne the observable u(t) = U(x(t)) where U is some smooth invertible function.
The discrete time companion x process evolves according to

∆x = f(x)∆t+ g (x+ α∆x) ∆η . (7.41)

We therefore obtain, in discrete time, for the new variable u

∆u = u(t+ ∆t)− u(t) = U(x+ ∆x)− U(x) ,

= ∆xU ′(x) +
1

2
α∆x2U ′′(x) +O

(
∆t3/2

)
,

= f(x)U ′(x)∆t+
1

2
g2(x)U ′′(x)∆η2 + g(x+ α∆x)U ′(x)∆η +O

(
∆t3/2

)
,

= f(x)U ′(x)∆t+

(
1

2
− α

)
g2(x)U ′′(x)∆η2 + g(x+ α∆x)U ′(x+ α∆x)∆η +O

(
∆t3/2

)
.

(7.42)

We note that

x = U−1(u) , (7.43)

and that

x+ α∆x = U−1(u+ α∆u) +O(∆t) . (7.44)

Equation (7.42) thus becomes

∆u = F (u)∆t+

(
1

2
− α

)
g2(U−1(u))U ′′(U−1(u))∆η2 +G(u+ α∆u)∆η +O

(
∆t3/2

)
,

:= F (u)∆t+

(
1

2
− α

)
g2(U−1(u))U ′′(U−1(u))∆t+G(u+ α∆u)∆η , (7.45)

with

F = (fU ′) ◦ U−1 ,

G = (gU ′) ◦ U−1 , (7.46)
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and where the := notation expresses that the two discrete time processes generate the same
process in the limit ∆t→ 0 (this is not a pointwise equality). This can be established either
by computing the Kramers-Moyal expansion of the u process and determining the Fokker-
Planck equation associated with Eq. (7.45) in the continuous-time limit, or by resorting to
the substitution rule Eq. (7.31). In the continuous time limit, we thus arrive at

du

dt
α
= U ′

dx

dt
+

(
1

2
− α

)
g2(U−1(u))U ′′(U−1(u)) ,

α
= F (u) +

(
1

2
− α

)
g2(U−1(u))U ′′(U−1(u)) +G(u)η(t) . (7.47)

The above formula is at the core of stochastic calculus as it explicitely shows how working
with paths generated by Eq. (7.20) modi�es the chain rule of ordinary di�erential calculus.
For α = 0, Eq. (7.47) is the celebrated Itō’s lemma. Note, however, that for α = 1/2 the
standard chain rule holds. This is one of the most important assets of Stratonovich dis-
cretized stochastic di�erential equations. An interesting consequence of formula Eq. (7.47)
is that it is always possible (for a one-dimensional process) to perform a nonlinear change
of variable so as to turn a process with multiplicative noise into a process with additive
one. This is indeed easily seen if one starts from a Stratonovich discretized process (from
Eq. (7.19) we know that any α-discretized stochastic di�erential equation can be turned into
a Stratonovich discretized one) of the form

dx

dt

1/2
= f(x) + g(x)η(t) . (7.48)

Assuming g is a non vanishing function of x, we choose U to be such that

(gU ′) ◦ U−1 = Id , (7.49)

namely we choose

U(x) = exp

(∫ x

x0

1

g(x′)
dx′
)
, (7.50)

for some x0. We therefore obtain for u(t) = U(x(t)),
du

dt
= F (u) + η(t) . (7.51)

which has additive noise. The conversion of a multiplicative noise process into an additive
noise process is a peculiarity of processes living on the real axis which does not in general
extend to higher dimensions.

7.1.4 What changes in higher dimensions

We now introduce a d-dimensional stochastic process x(t) with components xµ for µ ∈
J1, dK. Einstein summation convention is hereafter used throughout. The time evolution of
x(t) is governed by

dxµ

dt
d
= fµ(x) + gµi(x)ηi(t) , (7.52)
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where the d accounts for the underlying discretization scheme and where the index i run
from 1 to n with the n-dimensional Gaussian white noise η(t) having correlations

〈ηi(t)〉 = 0 , 〈ηi(t)ηj(t′)〉 = δijδ(t− t′) . (7.53)

In the α-discretization scheme, we have

∆xµk = xµ((k + 1)∆t)− xµ(k∆t) = fµ(xk) + gµi (xk + α∆xk) ∆ηi,k , (7.54)

where the noise correlations are such that

〈∆ηi,k〉 = 0 , 〈∆ηi,k∆ηj,k′〉 = ∆t δijδkk′ , (7.55)

We furthermore introduce the d× d matrix ωµν(x) de�ned by

ωµν(x) =
(
g(x) g(x)T

)µν
. (7.56)

The substitution rules Eq. (7.31)- (7.33) are generalized as follows

∆xµ∆xν := ωµν(x)∆t , ∆ηi∆ηj := ∆tδij , (7.57)

and

∆xµ∆xν∆xρ∆xσ := (ωµν(x)ωρσ(x) + ωµρ(x)ωνσ(x) + ωµσ(x)ωνρ(x)) ∆t2 . (7.58)

From these rules, it is possible to derive the equivalence rules between α-discretized and
α′-discretized stochastic di�erential equations, which reads

dxµ

dt
α
= fµ + gµiηi(t) ,

α′
= fµ + (α− α′)

∑

i

gνi ∂νg
µi + gµiηi(t) . (7.59)

Let us now investigate the issue of di�erentiation and changes of variables. Let U : Rd →
Rd be an invertible transformation (U is a di�eomorphism) and de�ne the process u(t) =
U(x(t)). Assuming that x evolves according to Eq. (7.52) understood as α-discretized, we
obtain
duµ

dt
α
= [fρ ∂ρU

µ] ◦ U−1(u) +

(
α− 1

2

)
[ωρσ ∂ρ∂σU

µ] ◦ U−1(u) +
[
gρi ∂ρU

µ
]
◦ U−1(u) ηi(t) .

(7.60)

Therefore, as for one-dimensional systems, the rules of di�erential calculus hold in the
Stratonovich discretization α = 1/2. In such a discretization, Eq. (7.60) shows that under
a change of coordinates (that is, a rerametrization of the variables describing the system),
fµ and gµi transform as contravariant vectors do in Riemann geometry regarding their µ
index. Accordingly, ωµν transforms as a rank-2 contravariant tensor. We will therefore
borrow some of the language of Riemannian geometry to e�ciently study transformations
under a reparametrization of coordinates. Let us �rst write the Fokker-Planck equation
associated to Eq. (7.52) in the Stratonovich discretization. It is given by

∂tP = −∂µ
(
fµ +

1

2

∑

i

gνi ∂νg
µi

)
P +

1

2
∂µ∂ν (ωµνP ) . (7.61)
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It is clear that P (x, t) is not invariant under a change of coordinates. Indeed, the simplest
scalar invariant object one can construct is the in�nitesimal probability of �nding the sys-
tem in a box of size ddx around x at time t that writes ddxP (x, t). In what follows, we
construct a scalar invariant probability density along the footsteps of [86]. This construc-
tion renders the connection to Riemannian geometry more explicit and it will serve as our
starting point for constructing covariant path integral representations of stochastic di�er-
ential equations. We �rst assume that ωµν(x) is invertible. This requires, in particular, that
n ≥ d (where n is the dimension of the noise space). Following standard conventions, we
denote by ωµν(x) the inverse of ωµν(x) (ωµρωρν = δµρ). The matrix ωµν(x) is symmetric,
positive-de�nite and transforms as a rank-2 convariant tensor under a change of coordi-
nates. It can thus be promoted as the metric tensor of a d-dimensional Riemann space.
Denoting by ω(x) the determinant of ωµν(x), we construct the invariant volume element

ddx
√
ω(x) , (7.62)

and we introduce

K(x, t) =
P (x, t)√
ω(x)

, (7.63)

which is thus invariant under a change of coordinates. It can be shown [86] that K(x, t)
evolves according to the manifestly covariant equation

∂tK = −∇µ (hµK) +
1

2
∇µ∇ν (ωµνK) , (7.64)

where∇µ is the covariant derivative associated with the metric ωµν . While∇µ = ∂µ when
acting on a scalar, when applied to a contravariant vector Aν , it acts as

∇µA
ν = ∂µA

ν + ΓρµνAρ , (7.65)

and when applied to a contravariant rank-2 tensor T ρσ, it acts as

∇µT
ρσ = ∂µT

ρσ + ΓρµνT
νσ + ΓσµνT

ρν , (7.66)

where Γµρσ is the corresponding Christo�el symbol,

Γµρσ =
1

2
ωµν (∂ρωνσ + ∂σωνρ − ∂νωρσ) . (7.67)

In addition, the vector hµ appearing in Eq. (7.64) is de�ned by

hµ = fµ − 1

2
Γρνρω

νµ − 1

2
∂νg

νigµj δij , (7.68)

which can be shown to transform as a vector under a change of coordinates. We also intro-
duce, as it will prove useful in many parts of this work, the Ricci scalar curvature associated
to the ωµν metric

R = ωµν
(
∂ηΓ

η
µν − ∂µΓηην + ΓηµνΓ

ρ
ηρ − ΓηµρΓ

ρ
ην

)
. (7.69)
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Note that in this language, stochastic dynamics with additive noise is associated to a �at
space and a null Ricci curvature. Therefore, quite unlike the one-dimensional case, a multi-
dimensional stochastic process with a nonzero Ricci curvature cannot be mapped onto one
with an additive form by a change of variables. However, similarly to the one-dimensional
case, it is possible to generalize the α, β discretization scheme to higher space dimensions.
This is done by introducing a three index quantity Mµ

ρσ,

x̄µk = xµk + α∆xµk +Mµ
ρσ∆xρ∆xσ . (7.70)

The stage is now set for investigating the additional subtleties that path integrals conceal.

7.2 Path integral representation of stochastic processes

This section reviews the standard construction of path integral representations for the tran-
sition probability of stochastic di�erential equations with Gaussian white noise. The sim-
pler example of a one-dimensional process with additive noise is treated �rst. In line with
the points raised in Sec. 7.1.2 for stochastic integrals, we show that one can resort to dif-
ferent discretizations to construct the path integral. We also recall the connection between
the question of discretization of path integrals and the so-called operator ordering prob-
lem in quantum mechanics. We then turn to the more involved case of multi-dimensional
processes with multiplicative noise for which we introduce the notion of covariant path
integral representation and contruct explicitely the path integral in the α-discretization.
At the end of this section, we show that the rules of di�erential calculus, while known to
hold at the level of Stratonovich discretized stochastic di�erential equations, are not ade-
quate for changing variables at the level of α-discretized continuous-time path integrals,
including the Stratonovich case α = 1/2.

7.2.1 The one-dimensional additive case

We start by implementing our program on the example of a one-dimensional stochastic
process with additive noise

dx

dt
= f + η(t) , (7.71)

Let P [x, tobs;x0, t0] be the propagator associated to Eq. (7.71), i.e. the probability to be at x
at time tobs given that the motion starts at x0 at time t0. We divide the interval [t0, tobs] into
N slices and we introduce the intermediate times tk = t0 + k∆t with ∆t = (tobs − t0)/N
and tN = tobs, k = 0, . . . , N . We introduce the discrete-time companion process with time
step ∆t associated to Eq. (7.71),

∆xk = f(xk)∆t+ ∆ηk , (7.72)

and de�ne P∆t [x, tobs;x0, t0] the propagator associated to Eq. (7.72). We �rst use the equal-
ity of the two processes described above in the limit ∆t→ 0 to state that:

P [x, tobs;x0, t0] = lim
N→+∞

P∆t [x, tobs;x0, t0] . (7.73)
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Relying on the fact that the processes described here are Markovian, we use the Chapman-
Kolmogorov equation over the intermediate time windows [tk, tk+1] to obtain:

P [x, tobs;x0, t0] = lim
N→+∞

∫ N−1∏

k=1

dxk

N−1∏

k=0

P∆t [xk+1, tk+1;xk, tk] . (7.74)

In Eq. (7.72), the ∆ηk are independent and identically distributed random variables with a
normal probability density

P (∆ηk) =
1√

2π∆t
e−

∆η2
k

2∆t , (7.75)

so that the one-step propagator is obtained as

P∆t [xk+1, tk+1;xk, tk] =
1√

2π∆t
exp

(
− 1

2∆t
(∆xk − f(xk)∆t)

2

)
. (7.76)

This result leads to writing the �nite time propagator as:

P [x, t;x0, t0] = lim
N→+∞

1√
2π∆t

∫ N−1∏

k=1

(
dxk√
2π∆t

)
exp

(
−∆t

2

N−1∑

k=0

(
∆xk
∆t
− f(xk)

)2
)
,

(7.77)

=

∫

C(x0,t0;x,tobs)

Dx e−S[x(t)] , (7.78)

In Eq. (7.78), the meaning of the formal continuous time writing is inferred from the limiting
discrete-time expression where the path measure is expressed as:

Dx = lim
N→+∞

1√
2π∆t

N−1∏

k=1

(
dxk√
2π∆t

)
, (7.79)

and the action S[x(s)] as:

S[x(s)]
0
=

1

2

∫ tobs

t0

dt

(
dx

dt
− f(x)

)2

, (7.80)

where the superscript 0 above the equal sign is meant to specify the underlying time dis-
cretization. The notation C(x0, t0;x, tobs) appearing in the path integral sign in Eq. (7.78)
refers to the set of continuous paths with appropriate boundary conditions.

Changing discretization

Exactly in the same way as the same integral observable can be expressed using di�erent
discretizations and can thus correspond to visually di�erent continuous time expressions
(see e.g. Eq. (7.34)), we wish to rewrite the path integral weight associated with the process
in Eq. (7.71) not only as the limit of an Itō discretized sum but as the limit of an α-discretized
one with α ∈ [0, 1]. This will concretely illustrate that the underlying discretization scheme
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must be prescribed in order to work with path integrals in an unambiguous way (see [94]
for a review of the handling of path integrals in di�erent discretizations). We start from the
expression of the in�nitesimal propagator Eq. (7.76) obtained in the previous section which
we rewrite so as to evaluate f at x+ α∆x, rather than at x,

P∆t [x+ ∆x, t+ ∆t;x, t]

=
1√

2π∆t
exp

(
−∆t

2

[(
∆x

∆t
− f(x+ α∆x)

)2

+ 2α
∆x2

∆t
f ′ (x+ α∆x)

])
, (7.81)

up to negligible O(∆t3/2) corrections in the exponential. Hence we obtain the following
expression of the �nite time propagator:

P [x, tobs;x0, t0] = lim
N→+∞

1√
2π∆t

∫ N−1∏

k=1

dxk√
2π∆t

exp

(
−∆t

2

[
N−1∑

k=0

(
xk+1 − xk

∆t
− f (xk + α∆xk)

)2

+ 2α
∆x2

k

∆t
f ′ (xk + α∆xk)

])
,

(7.82)

Isolating the kinetic term
∑N−1

k=0 (∆xk/∆t)
2, we can rewrite the above equation as:

P [x, tobs;x0, t0] = lim
N→+∞

〈
exp

(
−∆t

2

N−1∑

k=0

2α
∆x2

k

∆t
f ′ (xk + α∆xk) + ...

)〉
, (7.83)

where the above average is taken with respect to free Brownian motion. We are now in
position to use the substitution rule of Eq. (7.31) to write:

P [x, tobs;x0, t0] = lim
N→+∞

1√
2π∆t

∫ N−1∏

k=1

(
dxk√
2π∆t

)

exp

(
−∆t

2

[
N−1∑

k=0

(
∆xk
∆t
− f (xk + α∆xk)

)2

+ 2αf ′ (xk)

])
,

α
=

∫

C(x0,t0;x,t)

Dx exp

(
−1

2

∫ t

t0

(ẋ− f(x))2 + 2αf ′(x)

)
,

(7.84)

where the superscript α in the continuous writing stands for α-discretized integral.

Path integrals and operator ordering

For the sake of completeness, we present here another derivation of the path integral rep-
resentation of the transition probability P [x, tobs;x0, t0]. This approach, which uses the
Fokker-Planck equation as its starting point, instead of the Langevin equation, emphasizes
the equivalence between the issue of the discretization of path integrals and the operator or-
dering problem in quantum mechanics. Using the standard momentum operator p̂ = −i d

dx

of quantum mechanics, we write the Fokker-Planck equation associated to Eq. (7.71) as

∂tP = −ĤFPP , (7.85)
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with ĤFP = 1
2
p̂2 + ip̂f̂ . Introducing the usual position eigenvectors |x〉, the in�nitesimal

propagator then reads

P [x+ ∆x, t+ ∆t;x, t] = 〈x+ ∆x| e−∆t(p̂2/2+ip̂f̂) |x〉 , (7.86)

= 〈x+ ∆x| e−∆t/2p̂2/2e−i∆tp̂f̂ |x〉 , (7.87)
where the last line is obtained using the �rst order of the Baker-Campbell-Hausdor� for-
mula. In Sec. 8.3.1, we will prove that for any function G

(
exp

(
f(x)∆t

d

dx

)
G

)
(x0) = G

(
exp

(
f(x)∆t

d

dx

)
x0

)
, (7.88)

which in the present case translates into,

exp
(
−ip̂f̂∆t

)
|x0〉 =

∣∣∣∣exp

(
f(x)∆t

d

dx

)
x0

〉
=
∣∣x0 + f(x0)∆t+O(∆t2)

〉
. (7.89)

We therefore obtain
P [x+ ∆x, t+ ∆t;x, t] ' 〈x+ ∆x| e−∆t/2p̂2 |x+ f(x)∆t+ ...〉 , (7.90)

' 1√
2π∆t

exp

(
−∆t

2

(
∆x

∆t
− f(x)

)2
)
. (7.91)

This expresses that a p̂x̂ or normal ordering of the Hamiltonian naturally leads to an Itō
discretized path integral. We could nevertheless choose to order it di�erently, following for
instance an α ordering, as in the following:

P [x+ ∆x, t+ ∆t;x, t] = 〈x+ ∆x| exp

(
− p̂

2

2
∆t− ip̂f̂∆t

)
|x〉 ,

= 〈x+ ∆x| exp

(
− p̂

2

2
∆t− i

(
(1− α)p̂f̂ + αf̂ p̂

)
∆t− αf̂ ′∆t

)
|x〉 ,

= exp (−αf ′(x)∆t) 〈x+ ∆x| exp
(
−iα∆tf̂ p̂

)
exp

(
− p̂

2

2
∆t

)
exp

(
−i(1− α)∆tp̂f̂

)
|x〉 ,

= exp (−αf ′(x)∆t) 〈x+ ∆x− α∆tf(x+ ∆x) + ...| exp

(
− p̂

2

2
∆t

)
|x+ (1− α)∆tf(x) + ...〉 ,

=
1√

2π∆t
exp

(
−αf ′(x)∆t− ∆t

2

(
∆x

∆t
− f (x+ α∆x)

)2
)
.

(7.92)

Thus, the α ordering of the operator p̂f̂ naturally leads to an α-discretized path inte-
gral. In particular, the well known Weyl ordering corresponds to α = 1/2 and leads to
a Stratonovich-discretized path integral.

7.2.2 Multidimensional processes

We now turn to the more general case of multidimensional processes with multiplicative
noise

dxµ

dt

1/2
= fµ(x) + gµi(x)ηi(t) . (7.93)
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Without loss of generality, equation (7.93) is understood as Stratonovich-discretized. Fur-
thermore, the matrix gµi(x) is hereafter assumed to be invertible of inverse giµ(x). This
imposes the necessary condition d = n. In the same vein as the presentation above, we
introduce the propagator P[x, tobs;x0, t0] of Eq. (7.93) and its discrete-time companion pro-
cess de�ned with a time step of duration ∆t = (tobs − t0)/N , N ∈ N. Accordingly we
introduce the scalar invariant propagators of the original process

K[x, tobs;x0, t0] =
P[x, tobs;x0, t0]√

ω(x)
, (7.94)

and of the companion process

K∆t[x, tobs;x0, t0] =
P∆t[x, tobs;x0, t0] .√

ω(x)
(7.95)

We then write a time-sliced expression for the propagators:

P[x, tobs;x0, t0] = lim
N→+∞

∫ N−1∏

k=1

dxk
N−1∏

k=0

P∆t[xk+1, tk+1;xk, tk] , (7.96)

⇔ K[x, tobs;x0, t0] = lim
N→+∞

∫ N−1∏

k=1

{
dxk
√
ω(xk)

}N−1∏

k=0

{
P∆t[xk+1, tk+1;xk, tk]√

ω(xk+1)

}
,

(7.97)

= lim
N→+∞

∫ N−1∏

k=1

{
dxk
√
ω(xk)

}N−1∏

k=0

K∆t[xk+1, tk+1;xk, tk] ,

=

∫

C(x0,t0;x,tobs)
Dx e−S[x(t)] . (7.98)

In the above expression, the meaning of the formal continuous-time writing is inferred from
the limiting discrete time expression with the path measure

Dx = lim
N→+∞

(
1√

2π∆t

)d ∫ N−1∏

k=1

{
dxk
√
ω(xk)√

2π∆t
d

}
, (7.99)

and the action

e−S[x(t)] = lim
N→+∞

N−1∏

k=0

(2π∆t)
d
2 K∆t[xk+1, tk+1;xk, tk] , (7.100)

Note that di�erent de�nitions of Dx and S[x(s)] could give the same result in the ∆t →
0 limit, only the product of the two being prescribed. It is thus not uncommon in the
literature to �nd di�erent discretization of the path measure (see e.g. [126, 164]. This precise
de�nition ofDx in Eq. (7.99), with the function ω being evaluated at xk, is however the only
one providing a scalar invariant path measure Dx. This is in contrast with the previous
section where the noise was additive, and for which the discretization of the path measure
Dx in Eq. (7.79) was not an issue. Di�erent discretizations can be used to represent the same
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action functional S[x(t)], as was illustrated by our study of the one-dimensional additive
case in Sec. 7.2.1. For a given discretization d, we write the action as the d-discretized
integral of a Lagrangian

S[x(t)]
d
=

∫ tobs

t0

dt Ld(x(t), ẋ(t)) , (7.101)

where the d subscript in Ld accounts for the fact that the functional form of the Lagrangian
depends on the underlying discretization.

7.2.3 Covariant path integral representation of stochastic processes

In this section we de�ne a central concept, that of a covariant path integral representation
for multidimensional stochastic di�erential equations with multiplicative noise. Let P [Ω]
be the probability that the system is in some region Ω of the phase space at time tobs while
being at x0 at t0. We have derived a path integral representation of this probability within
a given discretization scheme d:

P [Ω]
d
=

∫ x(tf )∈Ω

x(t0)=x0

Dx exp

(
−
∫ tobs

t0

dτ Lxd [x(τ), ẋ(τ)]

)
. (7.102)

where the superscript x stresses that this Lagrangian is associated with the variable x. We
are free to reparametrize the phase space and de�ne new variables u through u = U(x)
where U is an invertible transformation from Rd to Rd. Using this new parametrization,
the probability P [Ω] can be constructed accordingly:

P [Ω]
d
=

∫ u(tf )∈U(Ω)

u(t0)=U(x0)

Du exp

(
−
∫ tobs

t0

dτ Lud [u(τ), u̇(τ)]

)
. (7.103)

A path integral representation is said to be covariant if the following two conditions are
ful�lled. First we must have

Dx = Du , (7.104)

which expresses that the measure is a scalar invariant under changes of coordinates, con-
sistently with our construction. Second, we require that:

Lxd [x, ẋ] = Lud [U(x), (∂U/∂x).ẋ] . (7.105)

which means that one is free to use the standard chain rule directly at the level of the contin-
uous time Lagrangian. Stated otherwise, a discretization d of the path integral is covariant
if and only if the associated Lagrangian Lxd [x, ẋ] is manifestly covariant. In the follow-
ing section we will compute Lxα[x, ẋ], the continuous time α-discretized Lagrangian for all
α ∈ [0, 1]. A rapid visual inspection will then show us that none of these α-discretizations,
not even the Stratonovich one which is nevertheless adapted to the use of the chain rule at
the level of stochastic di�erential equations, are covariant: changing variables by applying
blindly the chain rule at the level of the continuous time Lagrangian is not an option in
these α-discretizations.

168



Stochastic calculus and path integrals

7.2.4 The α-discretized path integral

In this section, we construct the α-discretized path integral representation of the transition
probability of Eq. (7.93). This amounts at computing, in the limit ∆t→ 0, and up to O(∆t)
terms, the one step scalar propagatorK∆t[xk+1, tk+1;xk, tk] associated to the Stratonovich-
discretized equation:

∆xµk = fµ(xk)∆t+ gµi
(
xk +

∆xk
2

)
∆ηi,k . (7.106)

The later is straightforwardly given by:

(2π∆t)
d
2 K∆t[xk+1, tk+1;xk, tk] = (2π∆t)

d
2

∣∣∣∣det

(
∂∆ηi,k
∂∆xσk

)∣∣∣∣
P [∆ηi,k]√
ω(xk+1)

, (7.107)

with P [∆ηi,k] the probability distribution of the noise increments

P [∆ηi,k] =

(
1

2π∆t

) d
2

exp

(
−∆ηi,k∆ηj,kδ

ij

2∆t

)
. (7.108)

The point at which we choose to evaluate the functions appearing inK∆t[xk+1, tk+1;xk, tk]
then sets the discretization scheme of the action S[x(s)]. As we will show next, we can
infer from Eq. (7.107) the expression of the α-discretized Lagrangian for any α ∈ [0, 1].
Following the notations introduced in Sec. 7.1.4, it reads:

Lxα[x, ẋ] =
1

2

[
ωµν

(
dxµ

dt
− hµ

)(
dxν

dt
− hν

)
+ (1− 2α)

dxµ

dt

(
ωµνω

ρσΓνρσ + 2Γαµα
)

+2α∇µh
µ − (1− 2α)ωµνω

ρσΓνρσh
µ +

(
α− 1

2

)2

ωµνω
ρσωαβΓµρσΓναβ − α (1− α)R

+ α (1− α)ωµνΓαβµΓβαν + (1− 3α(1− α))ωµν∂νΓ
α
µα

]
.

(7.109)
For the sake of completeness, we explicitely write here the expressions of the Itō-discretized
Lagrangian,

Lx0 [x, ẋ] =
1

2

[
ωµν

(
dxµ

dt
− hµ

)(
dxν

dt
− hν

)
+

dxµ

dt

(
ωµνω

ρσΓνρσ + 2Γαµα
)
− ωµνωρσΓνρσh

µ

+
1

4
ωµνω

ρσωαβΓµρσΓναβ + ωµν∂νΓ
α
µα

]
,

(7.110)
and of the Stratonovich-discretized one,

Lx1/2[x, ẋ] =
1

2

[
ωµν

(
dxµ

dt
− hµ

)(
dxν

dt
− hν

)
+∇µh

µ − 1

4
R +

1

4
ωµνΓαβµΓβαν +

1

4
ωµν∂νΓ

α
µα

]
.

(7.111)
Before diving into the details of the computation of the Lagrangian in Eq. (7.109), note that
there is no α such that its expression is manifestly covariant. This con�rms our earlier
claim that the chain rule can not correclty be blindly used in order to change variables at
the level of an α-discretized continuous time action, even if it is Stratonovich discretized.
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Derivation of the α-discretized Lagrangian

For a matter of convenience, in order to obtain a path integral representation of Eq. (7.93)
where all functions in the in�nitesimal propagator are evaluated at xk +α∆xk, we start by
expressing this process by the equivalent α-discretized stochastic di�erential equation:

dxµ

dt
α
= fµ(α) + gµiηi(t) , (7.112)

with
fµ(α) = fµ +

(
1

2
− α

)
gνi∂νg

µjδij . (7.113)

In the discrete time companion process of Eq. (7.112), we express the noise increments in
terms of the displacement ∆x by

∆ηi = giν (x+ α∆x)
(
∆xν − f ν(α) (x+ α∆x) ∆t

)
, (7.114)

from where we can deduce the expression of the Jacobian of the change of variables when
going from the noise to the position
∣∣∣∣det

(
∂∆ηi
∂∆xβ

)∣∣∣∣ =
√
ω(x+ α∆x)

∣∣det
(
δνβ − α∂βf ν(α)∆t+ αgνj∂βgjρ (∆xρ − fρ∆t)

)∣∣ .
(7.115)

Please note that in Eq. (7.115), and until the end of this section after Eq. (7.121), functions
are assumed to be evaluated at x + α∆x unless explicitely stated otherwise. Following
Eq. (7.107), we �rst express in Eq. (7.115) ω(x + α∆x) in terms of ω(x + ∆x) up to terms
O(∆t). We observe that

ω(x+ α∆x) = ω(x+ ∆x) exp (lnω(x+ α∆x)− lnω(x+ ∆x)) ,

= ω(x+ ∆x) exp

(
−(1− α)∆xµ∂µ lnω − (1− α)2

2
∆xµ∆xν∂µ∂ν lnω

)
,

:= ω(x+ ∆x) exp
(
−2(1− α)∆xµΓαµα − (1− α)2ωµν∂νΓ

α
µα∆t

)
,

(7.116)

where the last line was obtained after using the substitution relation Eq. (7.57) and the
formula for the derivative of the determinant of the metric

∂µ lnω = ωαβ∂µωαβ = 2Γαµα . (7.117)

Using now the formula valid for any matrix H ,

det (1 + εH) = exp

(
ε Tr(H)− ε2

2
Tr
(
H2
))

+ o
(
ε2
)
, (7.118)

we can express the remaining determinant in Eq. (7.115) as
∣∣det

(
δνβ − α∂βf ν(α)∆t+ αgνj∂βgjρ (∆xρ − fρ∆t)

)∣∣

= exp

(
−α∂νf ν(α)∆t+ αgνj∂νgjρ

(
∆xρ − fρ(α)∆t

)
− α2

2
∂βg

νj∂νg
βiδij∆t

)
.

(7.119)
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Grouping all terms and taking the continuum limit, this eventually allows us to express the
α-discretized Lagrangian as

Lxα[x, ẋ] =
ωµν
2

(
dxµ

dt
− fµ(α)

)(
dxν

dt
− f ν(α)

)
+

dxµ

dt

(
αgνj∂νgjµ − (1− α)Γαµα

)

− α
(
∂νf

ν
(α) + gνj∂νgjρf

ρ
(α)

)
− (1− α)2

2
ωµν∂νΓ

α
µα −

α2

2
∂βg

νj∂νg
βiδij .

(7.120)

In order to from Eq. (7.120) to Eq. (7.109), we substitute for fµ(α) in Eq. (7.120) its expression
in function of hµ as infered from Eq. (7.113) and Eq. (7.68),

fµ(α) = hµ +
1

2
Γρνρω

µν +
1

2
∂νg

νigµjδij +

(
1

2
− α

)
gνi∂νg

µjδij ,

= hµ − 1

2
Γµαβω

αβ − αgνi∂νgµjδij .
(7.121)

The algebra is then tedious but straightforward to arrive at Eq. (7.109).

7.2.5 A free particle in the two-dimensional plane

Before delving in further mathematics, we illustrate the �ndings of this section on a simple
example inspired from [45]. We take a close look at a two-dimensional Brownian motion,
when changing from Cartesian to polar coordinates, and we shed light on where the di�-
culties lie in this speci�c example. We start by the equations of motion:

dx

dt
= ηx,

dy

dt
= ηy , (7.122)

where ηx and ηy are independent Gaussian white noises with correlations

〈ηx(t)ηx(t′)〉 = 〈ηy(t)ηy(t′)〉 = δ(t− t′). (7.123)

In this case, the measure over trajectories simply reads
∫
DxDy e−

1
2

∫ t
0 dτ[ẋ2+ẏ2] . (7.124)

Because the process in Eq. (7.122) has additive noise and vanishing drift, in writing Eq. (7.124)
there is no discretization issues involved. Following the work of Edwards and Gulyaev [45]
who �rst pinpointed these di�culties, we wish to rewrite the path probability in terms of
the polar coordinates r and φ with x = r cosφ and y = r sinφ. Assuming that we use a
covariant discretization scheme, the chain rule applies by de�nition and the measure over
the r, φ paths reads ∫

DrDφ e−
1
2

∫ t
0 dτ[ṙ2+r2φ̇2] , (7.125)

with DrDφ the covariant volume element given from Eq. (7.99) as:

DrDφ = lim
N→+∞

1

2π∆t

N−1∏

k=1

{
rk

drkdφk
2π∆t

}
. (7.126)
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This continuous-time expression of course di�ers from the ones that could be derived us-
ing an Itō discretization—which may not come as a surprise—but also with a Stratonovich
discretization. The latter is perhaps more surprising given that, at the level of a Langevin
equation, it is known to preserve di�erential calculus. In this particular problem, the vec-
torial drift hµ vanishes and the �at Euclidean metric in polar coordinates is given by

ωµν(r, φ) =

(
1 0
0 r2

)
. (7.127)

The corresponding Ricci scalar curvature vanishes and the only nonzero Christo�el sym-
bols are given by:

Γrφφ = −r, Γφrφ = Γφφr =
1

r
. (7.128)

Thus, from Eq. (7.109), the Itō Lagrangian writes

L0

(
r, ṙ, φ, φ̇

)
=

1

2

[
ṙ2 + r2φ̇2 +

ṙ

r
− 3

4r2

]
, (7.129)

and the Stratonovich one writes

L1/2

(
r, ṙ, φ, φ̇

)
=

1

2

[
ṙ2 + r2φ̇2 − 1

2r2

]
. (7.130)

None of the above actually matches the covariant expression obtained in Eq. (7.125). This
concretely illustrates that neither the Itō scheme nor the Stratonovich one (nor any α
scheme) are covariant discretization schemes of path integral weights. We defer to Secs. 8.2
and 8.3.1 the description of covariant discretization schemes.
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Stochastic calculus for path integrals
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In this chapter, we study the crucial issue of changing variables within the Onsager-
Machlup path integral. As we have seen in Sec. 7.1, the commonly used α-discretized path
integrals are not compatible with the naive use of the chain rule in continuous time. In
Sec. 8.1, we show that they are not compatible with the blind use of Itō’s lemma neither.
Working at the level of stochastic di�erential equations indeed involves dealing with the
singular object ẋ but working at the level of path integrals involves dealing with the even
more singular object ẋ2. This brings about higher order terms which need to be taken into
account when performing changes of variables at the level of path integrals. For a generic
α-discretized action and in any dimension d we explain in Sec. 8.1 how to extend Eq. (7.60)
so as to make it compatible with path integration.

In Sec. 8.3 we change our point of view and discretize di�erently the path integral so as
to make manifestly covariant and compatible with the use of the chain rule in continuous
time. We �rst review the old proposal of DeWitt [36] in the �eld of quantum mechanics in
curved space and its many extensions in the domain of classical stochastic processes [86,
35, 127]. We then introduce a discretization of the Langevin equation that is fully covariant
in discrete time. The latter generalizes a proposal of [29] for one-dimensional processes.
Building on it, we propose a higher-order discretization scheme of the path integral that
makes it covariant.
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Contributions

Section 8.1

• extension of Itō’s lemma for the change of variables inside path integrals,

• proof of a third order substitution rule.

Section 8.3

• discretization of multidimensional Langevin equations that is fully covariant
in discrete time

• higher-order discretization scheme that makes the path integral covariant.

8.1 Extensions of Itō’s lemma for path integral calculus

As we have extensively discussed in the previous section Sec. 7.2, the chain rule does not
operate at the level of a continuous-time α-discretized Lagrangian. For α 6= 1/2, this is
intuitively expected based on our knowledge of stochastic calculus performed at the level of
Langevin equations for which the chain rule does not hold. In line with the �ndings of [28]
where the authors focused on the one-dimensional case, we show in addition in this section
that applying blindly Itō’s lemma of α-discretized stochastic di�erential equations (7.47) to
the continuous time α-discretized Lagrangians does not provide a correct result either. In
explicit terms, this means that the di�erentiation rule

duµ

dt
= ∂ρU

µdxρ

dt
+

(
α− 1

2

)
ωρσ∂ρ∂σU

µ , (8.1)

for the evolution of the reparametrized process u(t) = U(x(t)), cannot be use withing a
Lagrangian. In the course of our derivation, we shall pinpoint the mathematical cause for
these failures and we shall construct an extension of Itō’s lemma for path integral calculus,
which is the main result of this section. In the following, we consider the α-discretized
in�nitesimal propagator from which originates the Lagrangian in Eq. (7.109) and its trans-
formation under the change of variable x(t) = X(u(t)) where X denotes the functional
inverse of U.

8.1.1 Transformation of variables at the path integral level

The logarithm of theα-discretized scalar invariant in�nitesimal propagatorK∆t[x+∆x, t+
∆t;x, t], as can be read from the continuous-time α-Lagrangian in Eq. (7.109), contains, up
to order O(∆t), three types of terms. A �rst one is of the form

A1 = T (0)(x)∆t , (8.2)
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where the discretization point of T (0) is irrelevant to the order in ∆t we consider. It trans-
forms, under a change of variables, in a trivial fashion, namely

A1 = T (0)(X(u))∆t+O(∆t3/2) . (8.3)

Terms of the form
A2 = T (1)

µ (x + α∆x)∆xµ . (8.4)

which are O(∆t1/2), are also encountered. In the continuous-time scalar propagator, these
will give rise to a standard α-discretized integral of the type described in Eq. (7.24). As we
hereafter argue, the expression inferred from the direct application of Itō’s lemma Eq. (8.1)
is actually correct. This means that A2 transforms, under a change of variables, according
to

A2 = T (1)
µ (X(u + α∆u)) ∂νX

µ (u + α∆u) ∆uν

+

(
α− 1

2

)
T (1)
µ (X(u)) Ωρσ (u) ∂ρ∂σX

µ (u) ∆t ,
(8.5)

with
Ωρσ (u) = ωµν (X(u)) ∂µU

ρ (X(u)) ∂νU
σ (X(u)) , (8.6)

the inverse metric tensor associated to the u(t) process. The corresponding Christo�el
symbols associated to this metric tensor will be denoted Γ̂.

Finally, the last term inside the exponential of the α-discretized scalar invariant in-
�nitesimal propagator is the kinetic one, of order O(1) in terms of ∆t,

A3 = ωµν (x + α∆x)
∆xµ∆xν

∆t
, (8.7)

where the 1
2

prefactor was omitted for the sake of simplicity. Interestingly, and in the same
vein as Eq. (7.39), in order to perform the change of variables in Eq. (8.7) and to collect all
terms up to O(∆t), we need to express ∆xα as a function of ∆uµ up to order O

(
∆t3/2

)
.

This is one order more in ∆t1/2 than what was needed earlier to establish Itō’s lemma for
stochastic di�erential equations. Furthermore, and this is a new feature to pay attention
to, we also need to express ωµν (x + α∆x) in terms of Ωρσ (u + α∆u) up to order O(∆t).
The rest of this section will be devoted to establishing the transformation law ofA3 under a
change of variable. We begin by plainly stating the result (where all functions are evaluated
at u + α∆u):

A3 = Ωµν
∆uµ∆uν

∆t
+ (1− 2α)

[
3Ωηγ∂(ηX

µ∂γ∂δ)X
νωµν∆u

δ

−3αΩαηΩβδΓ̂γαβ∂(ηX
µ∂γ∂δ)X

νωµν∆t

+3(1− 2α)ΩαµΩβνΩγρ
(
∂(αX

η1∂β∂γ)X
η2ωη1η2

) (
∂(ρX

ϕ1∂µ∂ν)X
ϕ2ωϕ1ϕ2

)
∆t

+
1− 2α

4
(Ωη1η2Ωγ1γ2 + 2Ωη1γ1Ωη2γ2) ∂η1∂η2X

µ∂γ1∂γ2X
νωµν∆t

]

+ (1− 3α(1− α)) Ωηγ1Ωγ2γ3∂ηX
µ∂γ1∂γ2∂γ3X

νωµν∆t

+
α(1− α)

2
(ΩρσΩηγ + 2ΩργΩση) ∂ρ∂σX

β∂ηX
µ∂γX

ν∂βωµν∆t+O(∆t3/2) ,

(8.8)

175



Chapter 8

where the notation (αβγ) means that the tensor is symmetrized with respect to these three
indices. The above formula provides the correct transformation law under changes of vari-
ables of the kinetic term of the α-discretized Lagrangian. It thus extends, Itō’s lemma for
changing variables at the level of stochastic di�erential equations to path integral calculus.
The issue of changing variables inside the continuous-time path integral has already been
addressed in the past [150, 77, 124, 28]. Provided one uses the covariant discretization of the
path measure shown in Eq. (7.99), formula (8.8) generalizes these contributions by making
the transformation law of the kinetic term under a change of variable explicit in a generic
α-discretization of the path integral weight and in any dimension d. Before proving this
result, a few comments are in order. The �rst term of Eq. (8.8) arises from the standard
chain rule. The terms in the bracket multiplied by (1− 2α) emerge from the same terms in
the expansion of ∆xµ as a function of ∆uρ as the ones that lead to the standard Itō’s lemma.
Unsurprisingly, this contribution to the transformation law thus vanishes when α = 1/2.
Eventually, the last two terms arise from higher order terms in the expansions and are com-
pletely missed by a blind implementation of Itō’s lemma at the level of the continuous time
Lagrangian. Note that there exists no value of α such that these two contributions van-
ish. Hence, the formula inferred from Itō’s lemma Eq. (8.1) never holds at the path integral
level. Moreover, the discretization parameter α appears in the same combinations in the
transformation law Eq. (8.8) and in the continuous time Lagrangian Eq. (7.109). This is to be
expected since the non-manifestly covariant part of the transformation of Lxα[x, ẋ] should
be compensated by all the terms coming in addition to those originating from the chain
rule in Eq. (8.8) for the scalar invariant propagator to be, indeed, a proper scalar.

8.1.2 Elementary transformation rules

In order to establish formula (8.8), we need to express (i) ∆xα af a function of ∆uµ up to
order O

(
∆t3/2

)
and (ii) ωµν (x + α∆x) in terms of Ωρσ (u + α∆u) up to order O(∆t). We

obtain �rst
∆xα =Xα(u + ∆u)−Xα(u)

= ∂µX
α (u + α∆u) ∆uµ +

(
1

2
− α

)
∂µ∂νX

α (u + α∆u) ∆uµ∆uν

+
1− 3α(1− α)

6
∂µ∂ν∂ρX

α (u) ∆uµ∆uν∆uρ +O
(
∆u4

)
.

(8.9)

The �rst two terms in the right-hand side of the above Eq. (8.9), from which one can infer
Itō’s lemma, are su�cient to express ∆x up to order O(∆t), which is the desired precision
when working at the level of stochastic di�erential equations. The higher order term is
however necessary to study transformation laws at the path integral level. Next, for an
arbitrary smooth function ϕ(x) we have,
ϕ (x + α∆x) = ϕ (X(u + α∆u− α∆u) + α∆x)

= ϕ (X(u + α∆u)) +
α(1− α)

2
∂ρ∂σX

ν(u)∂νϕ (X(u)) ∆uρ∆uσ +O(∆t3/2) .

(8.10)
Note that the correcting term in Eq. (8.10) is of orderO(∆t) and was negligible when study-
ing transformation properties of α-discretized stochastic di�erential equations. Note also
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that we naturally �nd in Eq. (8.9) and Eq. (8.10) the same combinations of α as in Eq. (8.8)
and Eq. (7.109). Using these last two equations, as well as the substitution rules for ∆uµ∆uν

and ∆uµ∆uν∆uρ∆uσ, we obtain the following transformation rule for the kinetic term

A3 = Ωµν
∆uµ∆uν

∆t
+ (1− 2α)∂ηX

µ∂γ∂δX
νωµν

∆uη∆uγ∆uδ

∆t

+

(
1

2
− α

)2

[Ωη1Ωη2Ωγ1Ωγ2 + 2Ωη1γ1Ωη2γ2 ] ∂η1∂η2X
µ∂γ1∂γ2X

νωµν∆t

+ (1− 3α(1− α)) Ωηγ1Ωγ2γ3∂ηX
µ∂γ1∂γ2∂γ3X

νωµν∆t

+
α(α− 1)

2
(ΩρσΩηγ + 2ΩργΩση) ∂ρ∂σX

β∂ηX
µ∂γX

ν∂βωµν∆t+O(∆t3/2) .

(8.11)

As already noted by several authors [150, 77], the Stratonovich case α = 1/2 is peculiar in
that no third power of ∆u appears in the transformation law of the kinetic term whereas
they do for α 6= 1/2. We show how to treat this terms in the following and derive a
substitution rule paving the way to Eq. (8.8).

Third order substitution rule

In this section we derive a substitution rule for third order terms of the type

Tµνρ (u + α∆u)
∆uµ∆uν∆uρ

∆t
, (8.12)

i.e. a way to replace such terms in the path integral weight by contributions involving
zeroth and �rst powers of ∆x only. This substitution rule has a weaker meaning than the
second and fourth order ones as it does not correspond to L2 convergence but rather to a
weaker convergence in distribution. In the same vein as Sec. 7.2.1, let us separate the kinetic
term from the rest and write the in�nitesimal propagator, up to order O(∆t), as follows

P [x + ∆x, t+ ∆t;x, t]

=

√
ω(x + ∆x)

(2π∆t)d/2
exp

(
−1

2
ωµν (x + α∆x)

∆xµ∆xν

∆t

)
exp

(
T (0)(x)∆t+ T (1)

µ (x + α∆x)∆xµ

+T (2)
µν (x)∆xµ∆xν + T (3)

µνρ(x + α∆x)
∆xµ∆xν∆xρ

∆t
+ T (4)

µνρσ(x)
∆xµ∆xν∆xρ∆xσ

∆t

)
,

=

√
ω(x + ∆x)

(2π∆t)d/2
exp

(
−1

2
ωµν (x + α∆x)

∆xµ∆xν

2

){
1 + T (0)(x)∆t+ T (1)

µ (x + α∆x)∆xµ

+T (2)
µν (x)∆xµ∆xν + T (3)

µνρ(x + α∆x)
∆xµ∆xν∆xρ

∆t
+ T (4)

µνρσ(x)
∆xµ∆xν∆xρ∆xσ

∆t

+
1

2
T (1)
µ (x)T (1)

ν (x)∆xµ∆xν +
1

2
T (3)
µνρ(x)T

(3)
αβγ(x)

∆xµ∆xν∆xρ

∆t

∆xα∆xβ∆xγ

∆t

+ T (1)
µ (x)T

(3)
αβγ(x)

∆xµ∆xα∆xβ∆xγ

∆t
+O(∆t3/2)

}
,

(8.13)
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where, for the sake of generality of the demonstration, we have kept all possible terms,
including those for which we already know the subsitution relations. Without any loss of
generality we furthermore assume that T (3)

µνρ is fully symmetric and so as are T (2) and T (4).
In the continuous time limit, the process is entirely described by the �rst two moments of
the probability distribution Eq. (8.13) which read

〈∆xµ∆xν〉 = ωµν(x)∆t+O(∆t3/2) , (8.14)

and
〈∆xµ〉 = ∆xµ + T (1)

ν (x)ωµν∆t+ 3T (3)
νσρ(x)ωµνωσρ∆t+O(∆t3/2) , (8.15)

where ∆xµ, and accordingly for the bar notation in the following, stands for

∆xµ =

∫
d∆x

√
ω(x + ∆x)

(2π∆t)d/2
exp

(
−1

2
ωρσ (x + α∆x)

∆xρ∆xσ

2

)
∆xµ . (8.16)

De�ning T̂ (1)
ν (x) = T

(1)
ν (x) + 3T

(3)
νσρ(x)ωσρ(x), one can thus rewrite the �rst moment equa-

tion as
〈∆xµ〉 = ∆xµ + T̂ (1)

ν (x)ωµν(x)∆t+O(∆t3/2) . (8.17)

From Eq. (8.17), however, one cannot naively deduce that the third order substitution rela-
tion reads at the level of the in�nitesimal propagator

T (3)
µνρ(x + α∆x)

∆xµ∆xν∆xρ

∆t
→ 3T (3)

µνρ(x + α∆x)ωµν(x + α∆x)∆xρ , (8.18)

as that would not preserve the normalization of the in�nitesimal propagator. Indeed, the
latter is expressed as

0 = 1− 1 + T (0)dt+ T
(1)
µ (x + α∆x)∆xµ + T (2)

µν ωµν∆t+ T
(3)
µνρ(x + α∆x)

∆xµ∆xν∆xρ

∆t

+ 3T (4)
µνρσω

µνωρσ∆t+
1

2
T (1)
µ T (1)

ν ωµν∆t+
1

2
T (3)
µνρT

(3)
αβγ

[
6ωαµωβνωγρ + 9ωαβωγρωµν

]
∆t

+ 3T (1)
µ T

(3)
αβγω

αβωµγ∆t+O(∆t3/2) ,

(8.19)

where the discretization points were omitted where irrelevant. First, we notice that the
terms proportional to T (2)

µν and T (4)
µνρσ appear in the normalization equation only through

their mean with respect to the process

dxµ

dt
0
= gµi(x)ηi(t) , (8.20)

which is yet another justi�cation of the substitution relations we used so far. Hence, we
group hereafter all the terms in Eq. (8.19) involving T (0), T (2) and T (4) under the label T̃ (0).
Upon replacing T (1) by its expression in terms of T̂ (1) given above Eq. (8.17), we obtain

0 = 1− 1 + T̂ (0)∆t+ T̂
(1)
µ (x + α∆x)∆xµ +

1

2
T̂ (1)
µ T̂ (1)

ν ωµν∆t+O(∆t3/2) , (8.21)
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with

T̂ (0) = T̃ (0) + 3T
(3)
αβγT

(3)
µνρω

αµωβνωγρ + 6αT (3)
µνρΓ

µ
γσω

ργωσν

− 3T (3)
µνρω

µν ∆xρ

∆t
+ T (3)

µνρ

∆xµ∆xν∆xρ

∆t2
.

(8.22)

The remaining two integrals can be evaluated and yield

∆xρ

∆t
= (1− 2α)Γνµνω

µρ − αΓηγω
ηγ , (8.23)

and

∆xµ∆xν∆xρ

∆t2
= 3(1− 2α)Γασαω

µνωσρ − 3αΓραβω
µνωαβ − 9αΓµαβω

ραωβν . (8.24)

Inserting Eqs. (8.23)-(8.24) into Eq. (8.22), we obtain

T̂ (0) = T̃ (0) + 3T
(3)
αβγT

(3)
µνρω

αµωβνωγρ − 3αT (3)
µνρω

µηωνδΓηδρ . (8.25)

We are now in a position to infer the third order substitution rule. This amounts to replacing
the cubic term in the in�nitesimal propagator Eq. (8.13) by contributions involving zeroth
and �rst powers of ∆x only. Requiring that after substitution the �rst and second moments
of the two distribution coincide, and that they remain correctly normalized, we obtain

T (3)
µνρ(x + α∆x)

∆xµ∆xν∆xρ

∆t
:= 3T (3)

µνρ(x + α∆x)ωµν(x + α∆x)∆xρ

+
[
3T

(3)
αβγT

(3)
µνρω

αµωβνωγρ − 3αT (3)
µνρω

µηωνδΓρηδ

]
∆t .

(8.26)

While this formula was proposed in dimension one [124, 28] by requiring the consistency
of the two in�nitesimal propagators obtained by (i) performing a change of variables inside
the path integral weight as we did in Eq. (8.11) and (ii) performing the change of variables
directly at the level of the Langevin equation, we do not know of any published direct proof
such as that of the present section (at least in the physics literature). The use of the third
order substitution rule then allows us to obtain from Eq. (8.11) the transformation law for
the kinetic term of an α-discretized Lagrangian under a change of variable Eq. (8.8). We
note that the authors of a very recent work [41] have shown that the the Itō rule for Itō-
discretized stochastic di�erential equation given in Eq. (7.60) at α = 0 could be used blindly
within the Itō-discretized continuous-time path integral weight. This requires, at odds with
the case studied here, the path measure not to be covariantly discretized as in Eq. (7.99) but
rather to be de�ned as

Dx = lim
N→+∞

(
1√

2π∆t

)d ∫ N−1∏

k=1

{
dxk
√
ω(xk−1)

√
2π∆t

d

}
. (8.27)

This way both the kinetic term of the path integral weight and the path measure transform
non-trivially under a change of variable but the di�erent contributions cancel out and only
the ones induced by Itō’s lemma survive.
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8.2 Covariant path integral representation à la DeWitt

In the previous section, we have discussed the non covariance of the formal continuous-
time Lagrangian associated to theα-discretized path integral representation of multidimen-
sional stochastic equations. Designing constructions of path integrals that would naturally
be manifestly covariant in continuous time thus became a challenge for the theoretical
physics community, especially for those attempting to extend Feynman’s path integral to
quantum mechanics on curved spaces. In a seminal work [36], later complemented by the
work of [150], DeWitt came up with a �rst answer to this question. In DeWitt’s construc-
tion, which follows the very spirit of path integrals as introduced by Feynman in quantum
mechanics [52], the in�nitesimal propagator is given, up to a proportionality constant, as
the exponential of the manifestly covariant action of a classical massive particle in curved
space evaluated at the in�nitesimal classical path with appropriate boundary conditions.
In [36], it is then shown that such a path integral indeed propagates the solution of a
Schrödinger equation with Hamiltonian given, up to an additional potential term propor-
tional to the Ricci curvature of the embedding space, by that of a classical particle quantized
in such a way that it remains covariant at the quantum level. This approach for de�ning
the path integral was then later transposed to the context of di�usion processes as the ones
we focus on in the present work by Graham [87] and later Graham and Deininghaus [35]
who used a similar construction for the de�nition of path integrals for multidimensional
di�usion processes. While in this section we mostly follow the lines of [127], we will com-
ment on the di�erence with the approach of [86] in the end. We start by assuming that the
process in Eq. (7.106) can be described by the following path integral propagator

K[x, t;x0, t0] =

∫

C(x0,t0;x,t)
Dx exp

(
−
∫ t

t0

(
1

2
ωµν ẋ

µẋν + aµẋ
µ + b

)
dτ

)
, (8.28)

where the path measure follows the de�nition in Eq. (7.99) and where the in�nitesimal
scalar invariant propagator reads

K[x + ∆x, t+ ∆t;x, t] = exp−1

2

∫ t+∆t

t

(ωµν ẋ
µ
clẋ

ν
cl + aµẋ

µ
cl + b) dτ . (8.29)

In Eq. (8.29), xcl(τ) is the in�nitesimal minimal action path such that xcl(t) = x and
xcl(t + ∆t) = x + ∆x. The vector �eld aµ(x) and the function b(x) are then set by re-
quiring agreement between the formula in Eq. (8.29) and the already known Stratonovich
discretized in�nitesimal propagator infered from Eq. (7.111). In the following, we eval-
uate the integral in the exponential of Eq. (7.111) and write the result in a Stratonovich
discretized form amenable to immediate comparison. We write the classical trajectory as
xµcl(τ) = xµ + δxµ(τ) and due to boundary conditions we have δxµ(τ) ∼ O(

√
∆t) and

ẋµcl(τ) ∼ O(∆t−1/2). The minimal action path satis�es the Euler-Lagrange equations:

ẍνcl + Γναβẋ
α
clẋ

β
cl = ωνρ∂ρb+ ωνρ(∂ρaµ − ∂µaρ)ẋµcl . (8.30)

Hence we have ẍµcl(τ) ∼ O(∆t−1) and recursively thenth time derivative scales asxµ,(n)
cl (τ) ∼

O(∆t−n/2). Note that for aµ = 0 and b = 0, Eq. (8.30) is nothing more but a geodesic equa-
tion. First, from the above discussed scalings,

∫ t+∆t

t

b(xcl(τ))dτ = b(x)∆t+O(∆t3/2) . (8.31)
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Furthermore,
∫ t+∆t

t

aµ (xcl(τ)) ẋµ(τ)dτ =

∫ t+∆t

t

(aµ(x) + δxν∂νaµ(x)) ẋµ(τ)dτ +O(∆t3/2) ,

= aµ(x)∆xµ + ∂νaµ(x)

∫ k+1

t

δxν(τ) ˙δxµ(τ)dτ +O(∆t3/2) .

(8.32)

We now use the expansions:

δxµ(τ) = (τ − t)ẋµ(t) +O(∆t) ,

ẋµcl(τ) = ẋµcl(t) +O(1) ,
(8.33)

to conclude that to the desired order
∫ t+∆t

t

δxν(τ) ˙δxµ(τ)dτ =
1

2
∆xµ∆xν +O(∆t3/2) , (8.34)

and therefore we obtain the integral in Eq. (8.32) as
∫ t+∆t

t

aµ (xcl(τ)) ẋµ(τ)dτ = aµ(x + ∆x/2)∆xµ +O(∆t3/2) . (8.35)

Finally, we want to integrate the kinetic term
∫ t+∆t

t

ωµν(xcl(τ))ẋµcl(τ)ẋνcl(τ)dτ . (8.36)

First, note that the integrand, that would be strictly conserved over time along a geodesic,
remains conserved in the presence of the �elds aµ and b to the desired order in ∆t since

d

dτ
(ωµν ẋ

µ
clẋ

ν
cl) = 2ẋµ∂µb , (8.37)

so that
ωµν(xcl(τ))ẋµcl(τ)ẋνcl(τ) = ωµν(x)ẋµcl(t)ẋ

ν
cl(t) +O(

√
∆t) . (8.38)

Therefore,
∫ t+∆t

t

ωµν(xcl(τ))ẋµcl(τ)ẋνcl(τ)dτ = ωµν(x)ẋµ(t)ẋν(t)∆t+O(∆t3/2) . (8.39)

Next, we Taylor expand ∆xµ = ẋµ(t)∆t+ (1/2)ẍµ(t)∆t2 + (1/6)
...
xµ(t)∆t3 + ..., and using

Eqs. (8.30)-(8.33) we obtain

1

2

∫ t+∆t

t

ωµν(xcl(τ))ẋµcl(τ)ẋνcl(τ)dτ =
1

2
ωµν(x)

∆xµ∆xν

∆t
+

1

4∆t
∂αωνβ(x)∆xα∆xβ∆xν

+
1

∆t

{
1

12
∂µ∂νωαβ(x)− 1

24
Γραβ(x)Γσµν(x)ωρσ(x)

}
∆xα∆xβ∆xµ∆xν +O(∆t3/2) ,

(8.40)
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where all functions are evaluated at x. The detail of the computation can be found in [26].
Note that to the desired order in ∆t, the result is independent of aµ and b. This means that
evaluating the integral in Eq. (8.29) along the minimal action path or along the geodesic path
with appropriate boundary conditions is completely equivalent. We can now expand all the
functions around x + ∆x/2 and use the substitution rules to compare the obtained result
with the Stratonovich in�nitesimal propagator obtained in the previous section. Agreement
between the two requires:

aµ = −ωµνhν , (8.41)

b =
1

2
ωµνh

µhν +
1

2
∇µh

µ +
1

6
R . (8.42)

Thus the continuous time action that describes the stochastic process in Eq. (7.106) con-
structed using Eq. (8.29) takes, unsurprinsingly as it is build using covariant notions, a
manifestly covariant form and reads:

S[x(t)] =

∫
dτ

1

2
ωµν(ẋ

µ − hµ)(ẋν − hν) +
1

2
∇µh

µ +
1

6
R . (8.43)

This way of constructing path integrals is therefore, in the continuous time limit, compat-
ible with the naive use of the chain rule for performing changes of variables. In his 1977
paper [87], Graham derived the following manifestly continuous time action:

S[x(t)] =

∫
dτ

1

2
ωµν(ẋ

µ − hµ)(ẋν − hν) +
1

2
∇µh

µ +
1

12
R , (8.44)

where the curvature contribution has a coe�cient 1/12 instead of the 1/6 of Eq. (8.43).
The reason that this is so is that, in Graham’s construction, and as was shown in [35], the
in�nitesimal propagator actually takes the WKB form

K[x1 = x + ∆x, t+ ∆t;x, t]

= (∆t)n/2 (ω(x + ∆x)ω(x))−1/4

√
det−∂

2S[xcl(t)]

∂xµ0∂x
ν
1

exp−S[xcl(t)] ,
(8.45)

with the so called van Vleck-Pauli-Morette determinant [157] given by

(∆t)n/2 (ω(x + ∆x)ω(x))−1/4

√
det−∂

2S[xcl(t)]

∂xµ0∂x
ν
1

= exp− 1

12
R∆t+O(∆t3/2) . (8.46)

The main di�erence between the two Lagrangian Eq. (8.43) and (8.44) thus lies in whether
the WKB-type prefactor is incorporated or not within the action itself which results in the
R/6 or R/12 contributions.

8.3 Higher-order discretization schemes for covariant path
integrals

Our interest now goes into knowing if one can construct a discretized version of the path
integral in the same way as in Sec. 7.2.4 that would be covariant in continuous time and
therefore consistent with di�erential calculus. This requires using higher order discretiza-
tion schemes for the so called kinetic term.
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8.3.1 Covariant Langevin equation in discrete time

Consider a discrete time Stratonovich Langevin equation. As already discussed, this equa-
tion is covariant up to terms scaling as O(∆t1/2). While this is enough to warrant the co-
variance of the Langevin equation obtained in the limit ∆t→ 0, we have seen that midpoint
discretized in�nitesimal propagators have a non covariant formal continuous time limit due
to these O(∆t1/2) corrections. In this section, we introduce an alternative discretization of
Langevin equations that describes the same process as the Stratonovich discretized one
in the continuous time limit and that has the remarkable property of being covariant in
discrete time to all orders in ∆t in a way that will be made precise below. It extends the
results previously obtained by L. Cugliandolo, V. Lecomte and F. van Wijland in [29] for
one-dimensional systems to multidimensional ones. Lastly, we use this discretization as a
guide to construct a new path integral representation of the continuous time process. We
introduce the stochastic equation:

∆xα = Tf,g ·
(
fα∆t+ gαi∆ηi

)
(x) (8.47)

with ∆ηi the same zero mean Gaussian noise as before and the operator Tf,g de�ned by its
action on function as

Tf,g · h(x) =

(
exp (fµ∆t+ gµi∆ηi) ∂xµ − 1

(fµ∆t+ gµi∆ηi) ∂xµ
h

)
(x) . (8.48)

Direct expansion of Eq. (8.47) shows that this process and the Stratonovich discretized one
in Eq. (7.54) are equivalent in the limit ∆t→ 0. This discretization scheme, inspired by the
�eld of calculus with Poisson point processes [50], is transparent to the chain rule, to all
orders in ∆t in the sense that the process u(t) = U(x(t)) evolves according to

∆uα = TF,G ·
(
Fα∆t+Gαi∆ηi

)
(u) (8.49)

with
Fα = ∂βU

αfβ ,

Gαi = ∂βU
αgβi .

(8.50)

This statement is proved in the next section.

Proving the covariance of the discretization scheme

Let U, be an invertible transformation of the initial coordinates {xα}. We de�ne the new
process u(t) = U(x(t)). Let’s assume �rst that the chain rule holds with the discretization
rule speci�ed above. Then,

∆uσ =

[
exp ∂Uµ

∂xα
fα∆t+ ∂Uµ

∂xα
gαi∆ηi∂uµ − 1(

∂Uµ

∂xα
fα∆t+ ∂Uµ

∂xα
gαi∆ηi

)
∂uµ

](
∂Uσ

∂xβ
fβ∆t+

∂Uσ

∂xβ
gβi∆ηi

)
,

=

[
exp fα∆t+ gαi∆ηi∂xα − 1

(fα∆t+ gαi∆ηi) ∂xα

](
∂Uσ

∂xβ
fβ∆t+

∂Uσ

∂xβ
gβi∆ηi

)
,

=
[
exp fα∆t+ gαi∆ηi∂xα − 1

]
Uσ

(8.51)

183



Chapter 8

On the other side, independently of the chain rule, we have

∆vσ = V σ
(
x1 + ∆x1, ...

)
− V σ

(
x1, ...

)
, (8.52)

with moreover

∆xµ =

[
exp fα∆t+ gαi∆ηi∂xα − 1

(fα∆t+ gαi∆ηi) ∂xα

] (
fµ∆t+ gµi∆ηi

)
,

=

[
exp fα∆t+ gαi∆ηi∂xα − 1

(fα∆t+ gαi∆ηi) ∂xα

](
∂xµ

∂xν
f ν∆t+

∂xµ

∂xν
gνi∆ηi

)
,

=
[
exp fα∆t+ gαi∆ηi∂xα − 1

]
xµ

(8.53)

Proving the validity of the chain rule in this discretization scheme amounts therefore to
proving the following functional identity:

V σ
[(

exp fα∆t+ gαi∆ηi∂xα
)
x1, ...

]
=
[
exp fα∆t+ gαi∆ηi∂xα

]
V σ
(
x1, ...

)
, (8.54)

which generalizes Eq. (7.88). In order to prove the previous equation, we follow the route
taken in the 1-dimensional case [29] and we de�ne :

Ψ(α) = expα
(
fµ∆t+ gµi∆ηi

)
∂xµ [V σ(χ1(α, ·), ...)] (x(t)) , (8.55)

with
χβ(α, x) = exp (1− α)

(
fµ∆t+ gµi∆ηi

)
∂xµx

β . (8.56)
We can then prove that Ψ′(α) = 0, a property that then leads to

Ψ(0) = Ψ(1) , (8.57)

so that the functional equation established earlier is veri�ed. Indeed:

Ψ′(α) =
∑

m≥1

αm−1

(m− 1)!

[(
fµ∆t+ gµj∆ηj

)
∂xµ
]m

[V σ (χ1(α, ·), ...)] (x)

+
∑

m≥0

αm

m!

[(
fµ∆t+ gµj∆ηj

)
∂xµ
]m
[
∂V σ

∂xβ
(χ1(α, ·), ...) ∂χ

β

∂α

]
(x) ,

=
∑

m≥1

αm−1

(m− 1)!

[(
fµ∆t+ gµj∆ηj

)
∂xµ
]m

[V σ (χ1(α, ·), ...)] (x)

−
∑

m≥0

αm

m!

[(
fµ∆t+ gµj∆ηj

)
∂xµ
]m
[
∂V σ

∂xβ
(χ1(α, ·), ...)

(
fµ∆t+ gµj∆ηj

) ∂χβ
∂xµ

]
(x) ,

=
∑

m≥1

αm−1

(m− 1)!

[(
fµ∆t+ gµj∆ηj

)
∂xµ
]m

[V σ (χ1(α, ·), ...)] (x)

−
∑

m≥0

αm

m!

[(
fµ∆t+ gµj∆ηj

)
∂xµ
]m
[(
fµ∆t+ gµj∆ηj

) ∂V σ

∂xµ
(χ1(α, ·), ...)

]
(x) ,

= 0 ,

(8.58)

which completes the proof.
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Implicit discretization scheme of the Langevin equation

In order to use Eq. (8.47) as as a guide for building covariant path integral representations,
we rewrite the latter in an implicit form more familiar to Eq. (7.54). We expand Eq. (8.47)
neglecting terms of order O(∆t2) and obtain,

∆xµ = fµ
(
x +

∆x
2

)
∆t+

(
gµi
(
x +

∆x
2

)
+Mµi

αβ∆xα∆xβ
)

∆ηi +O(∆t2) , (8.59)

with
Mµi

αβ =
1

24

(
∂α∂βg

µi − 2gβj∂αg
γj∂γg

µi
)
. (8.60)

In the following, we introduce the notations

ḡµi (x,∆x) = gµi
(
x +

∆x
2

)
+Mµi

αβ∆xα∆xβ , (8.61)

and
ḡiµ(x,∆x) = ḡiµ

(
x +

∆x

2

)
+ Tiµαβ(x)∆xα∆xβ , (8.62)

with
Tiµαβ = −gjµgiνMνj

αβ , (8.63)
so that

ḡiµ(x,∆x)ḡµj(x,∆x) = δji +O(∆t3/2) . (8.64)
Inverting Eq. (8.59) thus yields

∆ηi = ḡiµ(x,∆x)

(
∆xµ − fµ

(
x +

∆x
2

)
∆t

)
+O(∆t2) . (8.65)

Furthermore, for any invertible and smooth transformation u(t) = U(x(t)) of the original
variables, Eq. (8.49) tells us that similarly

∆ηi = Ḡiµ(u,∆u)

(
∆uµ − F µ

(
u +

∆u
2

)
∆t

)
+O(∆t2) , (8.66)

where the notations follow Eq. (8.50). All in all, this warrants that the accordingly dis-
cretized kinetic term transform formally as a scalar under changes of variables up to cor-
rections of order O(∆t3/2). Indeed, we get from Eqs. (8.65)-(8.66)

Ḡiµ(u,∆u)Ḡjν(u,∆u)

(
∆uµ

∆t
− F µ

(
u +

∆u
2

))(
∆uν

∆t
− F ν

(
u +

∆u
2

))
δij∆t

= ḡiµ(x,∆x)ḡjν(x,∆x)

(
∆xµ

∆t
− fµ

(
x +

∆x
2

))(
∆xν

∆t
− f ν

(
x +

∆x
2

))
δij∆t

+O(∆t3/2) .

(8.67)

The realization that in this implicit discretization scheme the in�nitesimal propagator ki-
netic term transforms covariantly under the chain rule is a the basis of our subsequent
construction of manifestly covariant path integrals.
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8.3.2 A discretization scheme for covariant path integrals

In order to obtain a covariant discretization scheme in continuous time, Eq. (8.67) suggests
to write the in�nitesimal propagator under the following form

K[x + ∆x, t+ ∆t;x, t] = exp
(
−1

2

(
ḡiµ(x,∆x)ḡjν(x,∆x)δij

(
∆xµ − hµ

(
x + ∆x

2

)
∆t
)

∆t
×

×
(

∆xν − hν
(
x +

∆x
2

)
∆t

)
+ b(x)∆t

))
,

(8.68)
where b is yet to be determined. In order to �nd b, the simplest way to proceed is to start
from the already derived Stratonovich discretized in�nitesimal propagator and put by hand
the discretization suggested in Eq. (8.68). This yields,

K[x + ∆x, t+ ∆t;x, t] = exp
(
−1

2

(
ḡiµ(x,∆x)− Tiµαβ∆xα∆xβ

)
×

×
(
ḡjν(x,∆x)− Tjνρσ∆xα∆xβ

)
δij
(
∆xµ − hµ

(
x + ∆x

2

)
∆t
) (

∆xν − hν
(
x + ∆x

2

)
∆t
)

∆t

−1

2

(
∇µh

µ − 1

4
R +

1

4

[
ωµνΓαβµΓβαν + ωµν∂νΓ

α
µα

])
∆t

)
,

= exp
(
−1

2
ḡiµ(x,∆x)ḡjν(x,∆x)δij

(
∆xµ − hµ

(
x + ∆x

2

)
∆t
) (

∆xν − hν
(
x + ∆x

2

)
∆t
)

∆t

−1

2

(
∇µh

µ − 1

4
R +

1

4

[
ωµνΓαβµΓβαν + ωµν∂νΓ

α
µα

]
+ ∆L

)
∆t

)
,

(8.69)
with

∆L = −2Tiµαβgjνδ
ij∆xµ∆xν∆xα∆xβ

∆t2
,

= 2ωρµgkνM
ρk
αβ

∆xµ∆xν∆xα∆xβ

∆t2
,

:= 2ωρµgkνM
ρk
αβ

(
ωµνωαβ + ωµαωνβ + ωναωµβ

)
.

(8.70)

The coe�cient b can then be derived from the above equation and reads,

b = ∇µh
µ−1

4
R+

1

4

[
ωµνΓαβµΓβαν + ωµν∂νΓ

α
µα

]
+2ωρµgkνM

ρk
αβ

(
ωµνωαβ + ωµαωνβ + ωναωµβ

)
.

(8.71)
Before using the particular form of M displayed in Eq. (8.60), let us pause for a second and
remark that two discretizations of the form given in Eq. (8.68) together with Eq. (8.62) and
characterized by two di�erent T ′iµαβ and T ′′iµαβ yield the same continuous time Lagrangian
provided that

ωρµgkνM
′ρk
αβ

(
ωµνωαβ + ωµαωνβ + ωναωµβ

)
= ωρµgkνM

′′ρk
αβ

(
ωµνωαβ + ωµαωνβ + ωναωµβ

)
,

(8.72)
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where the relation betweenM ′ and T ′ (respectivelyM ′′ and T ′′) can be read from Eq. (8.63).
Remark that the relevant part ofMρk

αβ (only the symmetric part in the down indices interests
us) has d3(d + 1)/2 degrees of freedom while Eq. (8.72) imposes only one constraint. As
soon as d > 1, there exists therefore a degeneracy in the higher order discretizations of the
form Eq. (8.68) corresponding to a given continuous time Lagrangian. Let us now specify
the result for M given in Eq. (8.60). Inserting the latter in Eq. (8.70) yields,

∆L =
1

12
giαω

µν∂µ∂νg
αi +

1

6
gµi∂µ∂νg

νjδij +
1

6
Γαµαg

νi∂νg
µjδij −

1

6
gµi∂νg

αj∂αω
µν . (8.73)

We therefore obtain

b =∇µh
µ − 1

4
R +

1

4

[
ωµνΓαβµΓβαν + ωµν∂νΓ

α
µα

]
+

1

12
giαω

µν∂µ∂νg
αi +

1

6
gµi∂µ∂νg

νjδij

+
1

6
Γαµαg

νi∂νg
µjδij −

1

6
gµi∂νg

αj∂αω
µν .

(8.74)

As expected, b can be put in a manifestly covariant form by noting that

∆L =
1

12
giαω

µν∇µ∇νg
αi +

1

6
gµi∇µ∇νg

νjδij −
(

1

12
ωµν∂µΓανα +

1

6
ωµν∂αΓαµν+

1

12
ωµνΓαµβΓβνα +

1

6
ωµνΓααβΓβµν

)
,

(8.75)

so that b writes

b = ∇µh
µ − 5

12
R +

1

12
giαω

µν∇µ∇νg
αi +

1

12
giαω

µν∇µ∇νg
αi +

1

6
gµi∇µ∇νg

νjδij . (8.76)

Note that while the expression of b is manifestly covariant, the rotational symmetry in
the space of matrix gµi is not manifest in the obtained continuous time Lagrangian. This
symmetry is indeed broken at the level of the discretization as can be seen by the expression
of M in Eq. (8.60).

8.3.3 Higher order discretization point

The question we ask now is whether it is possible to cast the previous discretization into
the form of an higher order one as described in Eq. (7.38), i.e. we look for Bµ

αβ such that
discretizing the path integral at the point

x̄µ = xµ +
∆xµ

2
+Bµ

αβ∆xα∆xβ , (8.77)

gives the same continuous time Lagrangian as the one infered from Eq. (8.68). In the nota-
tions of the previous section, this amounts at having

Tiµαβ = Bν
αβ∂νgiµ , (8.78)

or equivalently
Mµi

αβ = Bν
αβ∂νg

µi . (8.79)
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From Eq. (8.72) we thus require that

ωρµgkν
(
ωµνωαβ + ωµαωνβ + ωναωµβ

)
Bσ
αβ∂σg

ρk = ∆L . (8.80)

where ∆L was given in Eq. (8.70). This equation imposes only one constraints so that the
solutions are in general degenerated. We look for a solution of the form

Bσ
αβ = λΓσµνω

µνωαβ . (8.81)

Equation (8.80) thus becomes a scalar equation over the parameter λ,

λ =
1

ΓρσρΓσµνω
µν

(
∆L

d+ 2

)
. (8.82)

Equation (8.82) together with Eq. (8.81) extend the results of [29] to multidimensional pro-
cesses. Note that in the case where the Riemannian manifold de�ned from the metric ωµν is
locally �at around some point x0, i.e. with vanishing �rst derivatives of the metric but non-
vanishing second ones, then we expect Eq. (8.80) to be singular and λ de�ned in Eq. (8.82)
to diverge. The points in space at which this can occur are however expected to be isolated
as if locally the metric has vanishing �rst and second derivatives then Eq. (8.80) is auto-
matically satis�ed for any B at that point. We have therefore constructed a higher-order
discretization scheme generalizing that of [29] that allows to blindly use the chain rule at
the level of continuous-time path integral weights. In this discretization, all function are
evaluated at

x̄µ = xµ +
∆xµ

2
+

1

ΓρσρΓσωξω
ωξ

(
∆L

d+ 2

)
Γµηδω

ηδωαβ∆xα∆xβ , (8.83)

and the associated continuous-time Lagrangian reads

Lx[x, ẋ] =
1

2
ωµν

(
dxµ

dt
− hµ

)(
dxν

dt
− hν

)
+

1

2
∇µh

µ − 5

24
R +

1

24
giαω

µν∇µ∇νg
αi

+
1

24
giαω

µν∇µ∇νg
αi +

1

12
gµi∇µ∇νg

νjδij .

(8.84)

These results bring new light on the mathematical subtleties associated to path integrals and
the problems these can raise when manipulated improperly. The interest of formula (8.84)
lies much more in its very existence, namely in the possibility of deriving such a covariant
Lagrangian, than in its practical roll-out. While bringing answers to these questions for
Onsager-Machlup path integrals in �nite dimension, it certainly raises many questions for
path integrals over �elds where the internal dimension d is somehow sent to in�nity. The
fate of covariant derivatives and curvature contributions deserves to be explored.
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Conclusion

This part was devoted to the Onsager-Machlup path integral representation of the transition
probability of di�usive systems and in particular to the issue of performing changes of vari-
ables directly at the level of the continuous time action. After reviewing the constructions
of α-discretized path integrals in Sec. 7.1, we have explained that these were not compati-
ble with the blind use of the chain rule, even in the Stratonovich discretization. Since the
seminal work of Edwards and Gulyaev [45] this fact has raised the interest of communities
working, given the ubiquity of path integrals, in a wide range of topics. In this work we
hope to have answered some of these old and intriguing questions. In Sec. 8.1, we have
shown that Itō’s formula for changing variables at the level of stochastic di�erential equa-
tions could be extended to treat the very singular ẋ2 term appearing in the path integral
weight so as to become usable for changing variables inside an α-discretized continuous
time action. We have then changed our point of view and, instead of changing the rules for
changing variables while keeping the discretization scheme �xed, insisted on �nding new
discretization schemes of the path integral that would make it compatible with the use of
the chain rule. We have reviewed DeWitt’s and Graham’s proposals in Sec. 8.2. There, the
in�nitesimal propagator is essentially expressed as the exponential of the classical action
evaluated along the (in�nitesimal) geodesic path with appropriate boundary conditions. In
a way more similar in spirit to the usual α-discretization, we have then proposed in Sec. 8.3
a higher-order discretization scheme that extends the Stratonovich one and which has the
property of being amenable to the use of the chain rule in continuous time.

These answers however come with their share of new questions which in the end all
amount to wondering: "What can we actually do and what can we not do with path inte-
grals?". For d-dimensional Gaussian processes, we have seen that performing a change of
variable was already far from being trivial. Fortunately, in the small noise limit, everything
becomes simple again. The blind use of the chain rule indeed then works in continuous
time as all the higher-order terms of Eq. (8.8) yield negligible contributions. Apart from that
limit, one however has to work more as we have shown in the present manuscript. Natu-
rally, we can wonder about what happens to �eld theories regarding these issues and how
does the geometrical picture we used throughout this work transform in the limit where
d is sent to in�nity. Another natural extension is the issue of non-Gaussian noises such
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as Poisson processes where the Langevin equation is not available anymore as a guideline.
The present work indeed suggests that in such cases an in�nite number of terms should be
kept in order to properly change variables inside the path integral. It also raises the related
question of �elds transforms of the Janssen-De Dominicis action that would mix both the
original and the response �elds as, for instance, the Cole-Hopf one. Finally, we stress that
similar questions should arise in static �eld theories where, at least in d = 1, an action
featuring a

∫
dx
(

dφ
dx

)2 contribution will be plagued by similar issues as the ones discussed
in this part on stochastic calculus. All in all, there is much we still do not know and that
remains to be discovered about path integrals.
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Appendix A

AOUP at small τ

We reproduce here the appendix of [143] that is associated to Sec.2.1 of the present manuscript.

A.1 Full steady-state distribution

In this appendix, we report the steady-state probability density Ps(x, v) up to order τ 2.

e
φ

T+DPs(x, v) = c0 +
√
τP1(v)

c0

√
Dφ(1)(x)

T +D
+ τP0(v)

[
− c0Dφ

(1)2

2(T +D)2
+ c2 +

Dc0φ
(2)

T +D

−
√
Db3

T +D

∫ x

0

e
φ(z)
T+D dz

]
+ τ

3
2

[
P3(v)c0D

3
2√

6

(
φ(1)3

(T +D)3
− 3φ(1)φ(2)

(T +D)2
+

φ(3)

T +D

)

+P1(v)

(
b3De

φ
T+D

T +D
− φ(1)b3D

(T +D)2

∫ x

0

e
φ(z)
T+D dz +

√
Dc2φ

(1)

T +D
− c0D

3
2φ(1)3

2(T +D)3

+
c0

√
D(D2 − T 2)φ(1)φ(2)

(T +D)3
+
c0

√
DTφ(3)

T +D

)]
+ τ 2P0(v)

[
c2Dφ

(2)

T +D
− c2Dφ

(1)2

2(T +D)2

− D
3
2 b3

(T +D)2

∫ x

0

e
φ(z)
T+Dφ(2)(z)dz +

c0D
2

8(T +D)4
φ(1)4 − c0D(D − T )φ(1)2φ(2)

2(T +D)3

+
b3D

3
2

(T +D)3

∫ x

0

(∫ s

0

e
φ(z)
T+D dz

)(
φ(1)(s)φ(2)(s)− (T +D)φ(3)(s)

)
ds+ c4

+
Dc0

2(T +D)

∫ x

0

φ(1)2(z)φ(3)(z)dz − Dc0(D + 2T )

(T +D)2
φ(3)φ(1) −

√
Db5

T +D

∫ x

0

e
φ(z)
T+D dz

+
Dc0(D − 2T )φ(2)2

4(T +D)2
+
Dc0(D + 2T )φ(4)

2(T +D)

]
.

(A.1)

In Eq. (A.1), c0 is de�ned by Eq. (2.26) while c2, c4, b3 and b5 are integration constants whose
expressions must be adapted to the boundary conditions. For a con�ning potential,Ps(x, v)
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must vanish for x→ ±∞, and thus b3 = b5 = 0 yielding the following spatial distribution:

e
φ

T+DPs(x) = c0 + τ

[
− c0Dφ

(1)2

2(T +D)2
+ c2 +

Dc0φ
(2)

T +D

]
+ τ 2

[
c2Dφ

(2)

T +D
− c2Dφ

(1)2

2(T +D)2
+ c4

+
c0D

2

8(T +D)4
φ(1)4 − c0D(D − T )φ(1)2φ(2)

2(T +D)3
+

Dc0

2(T +D)

∫ x

0

φ(1)2(z)φ(3)(z)dz

−Dc0(D + 2T )

(T +D)2
φ(3)φ(1) +

Dc0(D − 2T )φ(2)2

4(T +D)2
+
Dc0(D + 2T )φ(4)

2(T +D)

]
.

(A.2)

The integration constants c2 and c4 are �nally found by normalization, requiring
∫ +∞
−∞ Ps(x)dx =

1 at every order in τ . For a periodic potential of period L, the spatial distribution must re-
spect Ps(x+ L) = Ps(x). This condition implies b3 = 0, but b5 6= 0 and Ps reads:

e
φ

T+DPs(x) = c0 + τ

[
− c0Dφ

(1)2

2(T +D)2
+ c2 +

Dc0φ
(2)

T +D

]
+ τ 2

[
c2Dφ

(2)

T +D
− c2Dφ

(1)2

2(T +D)2
+ c4

+
c0D

2

8(T +D)4
φ(1)4 − c0D(D − T )φ(1)2φ(2)

2(T +D)3
+

Dc0

2(T +D)

∫ x

0

φ(1)2(z)φ(3)(z)dz

−Dc0(D + 2T )

(T +D)2
φ(3)φ(1) +

Dc0(D − 2T )φ(2)2

4(T +D)2
+
Dc0(D + 2T )φ(4)

2(T +D)

−
√
Db5

T +D

∫ x

0

e
φ(z)
T+D dz

]
,

(A.3)
with b5 given by

b5 =
D

2(T +D)

∫ L
0
φ(1)2φ(3)dx

∫ L
0
e

φ
T+D dx

∫ L
0
e−

φ
T+D dx

. (A.4)

Once again, c2 and c4 are then found by normalization. Note that in expression Eq. (A.1), v
corresponds to the rescaled variable ṽ. To get the exact steady-state distribution associated
to Eqs. (2.2)-(2.3), one thus has to make the change of variable v → √τv.

A.2 Harmonic potential

We report hereafter the steady-state distribution for the special case of a harmonic potential
φ(x) = κx2/2

Ps(x, v) =

√
4ab− c2

2π
e−ax

2−bv2+cvx , (A.5)

with the constants a, b and c de�ned as:

a =
κ(1 + κτ)2

2(D + T (1 + κτ)2)
b =

D(1 + κτ) + T (1 + κτ)2

2D(D + T (1 + κτ)2)
c =

κ
√
τ(1 + κτ)

D + T (1 + κτ)2
. (A.6)

Note that in expression Eq. (A.5), v corresponds to the rescaled variable ṽ. To get the exact
steady-state distribution associated to Eqs. (2.2)-(2.3), one thus has to replace v with

√
τv in

Eq. (A.5) and to multiply Eq. (A.5) by
√
τ . At T = 0, the distribution Eq. (A.5) corresponds

to the result obtained in [198].
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A.3 Computing the entropy production rate

As shown in Eq. (2.52), the entropy production rate can be expressed as

σ =
2

τ

〈∫ +∞

−∞
dtG(t) ẋ(0)φ′(x(t))

〉
. (A.7)

The small τ expansion of (A.7) is obtained by expanding it in powers of the particle dis-
placement. In order to make this expansion in τ more explicit, we rescale time as s = t/τ
and active force as v̂ = v

√
τ . The entropy production rate then writes

σ =
2

τ

〈∫ +∞

−∞
ds Ĝ(s)

dx

ds
(0)φ′(x(s))

〉
, (A.8)

with

Ĝ(s) =
D

4T 2

√
T

D + T
exp

(
−
√
D + T

T
|s|
)
, (A.9)

and the path measure 〈. . . 〉 corresponding now to the process

dx

ds
= −τφ′(x(s)) +

√
τ
(
v̂(s) +

√
2T η̂1(s)

)

dv̂

ds
= −v̂ +

√
2D η̂2(s) ,

(A.10)

where η̂1(s) and η̂1(s) are two independent Gaussian white noises. In order to keep no-
tations simple we drop the hat in the following. We introduce the particle displacement
during time s as

∆(s) = x(s)− x(0) . (A.11)

Hence, we have

σ =
2

τ

∫ ∞

−∞
dsG(s)

+∞∑

n=0

1

n!

〈
ẋ(0)φ(n+1)(x(0))∆(s)n

〉
. (A.12)

As usual in stochastic calculus, the underlying discretization of the various expressions
at hand is crucial. Therefore, throughout this appendix, and for the sake of clarity of the
presentation, we will sometimes go back to the discrete limiting expressions. For instance,
Eq. (A.12) is understood in the Stratonovich sense, i.e. as the ∆t→ 0 limit of the following
discrete expression

σ =
2

τ

+∞∑

i=−∞
∆tG(i∆t)

+∞∑

n=0

1

n!

〈
∆x0

∆t
φ(n+1)

(
x0 +

∆x0

2

)(
xi −

(
x0 +

∆x0

2

))n〉
,

(A.13)
with ∆xi = x((i + 1)∆t) − x(i∆t). The �rst term of the series involves the Stratonovich
average 〈ẋ(0)φ′(x(0))〉 and thus vanishes. We now focus on the second one that we denote
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by σ1. We have

σ1 =
2

τ

∫ +∞

−∞
dsG(s)

〈
ẋ(0)φ(2)(x(0))∆(s)

〉

=
2

τ

∫ +∞

0

dsG(s)
〈
ẋ(0)φ(2)(x(0)) (∆(s) + ∆(−s))

〉

=
2

τ

∫ +∞

0

dsG(s)

∫ s

0

ds′
〈
ẋ(0)φ(2)(x(0)) (ẋ(s′)− ẋ(−s′))

〉

=
2

τ

∫ +∞

0

dsG(s)

∫ s

0

ds′
〈
ẋ(0)ẋ(s′)

(
φ(2)(x(0))− φ(2)(x(s′))

)〉
,

where we have used time translation invariance in the steady state. The corresponding
discretized expression writes

σ1 =
2

τ

+∞∑

i=2

∆tG(i∆t)
i−1∑

j=1

〈
∆x0∆xj

∆t

[
φ(2)

(
x0 +

∆x0

∆t

)
− φ(2)

(
xi +

∆xi
∆t

)]〉
(A.14)

We now expand again Eq. (A.14) in powers of the displacement, which gives

σ1 = −2

τ

∫ +∞

0

dsG(s)

∫ s

0

ds′
+∞∑

n=1

1

n!

〈
ẋ(0)φ(n+2)(x(0))ẋ(s′)∆(s′)n

〉
. (A.15)

In the Stratonovich discretization scheme we recognize a total derivative and we thus get

σ1 = −2

τ

∫ +∞

0

dsG(s)
+∞∑

n=1

1

(n+ 1)!

〈
ẋ(0)φ(n+2)(x(0))∆(s)n+1

〉
. (A.16)

Eventually, when plugged back in Eq. (A.12), half of the terms cancel out and we obtain

σ =
2

τ

+∞∑

n=2

1

n!

∫ +∞

0

dsG(s)
〈
ẋ(0)φ(n+1)(x(0))∆(−s)n

〉
. (A.17)

which is Eq. (2.53) of the main text. Once more, Eq. (A.17) should be understood in the
Stratonovich sense, i.e. as the continuous time limit of

σ =
2

τ

+∞∑

i=1

∆tG(i∆t)
+∞∑

n=2

1

n!

〈
φ(n+1)

(
x0 +

∆x0

2

)
∆x0

∆t

(
x−i − x0 −

∆x0

2

)n〉
. (A.18)

This �rst result justi�es our claim that any additive Gaussian process in a harmonic poten-
tial has a vanishing entropy production rate. Since 〈η(0)x(−s)〉 = 0 for any s > 0 , we
are now in position to integrate out the thermal noise appearing in ẋ(0). This allows us to
obtain an unambiguous continuous expression for the entropy production rate. Indeed, in
(A.17),

〈
ẋ(0)φ(n+1)(x(0))∆(−s)n

〉

=
〈(
−τφ′(x(0)) +

√
τv(0) +

√
2Tτ η(0)

)
φ(n+1)(x(0)) (x(−s)− x(0))n

〉

= Tτ
〈
φ(n+2)(x(0)) (x(−s)− x(0))n − nφ(n+1)(x(0)) (x(−s)− x(0))n−1〉

+
〈(
−τφ′(x(0)) +

√
τv(0)

)
φ(n+1)(x(0)) (x(−s)− x(0))n

〉
.
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Note that the �rst term yields a telescopic sum. Then, using time translation invariance,
one obtains the entropy production rate as

σ =
2

τ

〈∫ +∞

0

dsG(s)

[
+∞∑

n=2

(−1)n

n!

(
−τφ′(x(s)) +

√
τv(s)

)
φ(n+1)(x(s))∆(s)n

]〉

+
2

τ

〈∫ +∞

0

dsG(s)Tτφ(3)(x(s))∆(s)

〉
.

So far this exact expression still involves two-time averages. In order to reduce the result
to the evaluation of stationary state averages, we �rst expand again Eq. (A.19) in powers of
∆(s). The entropy production rate can thus be written as the sum of two contributions

σ = σa + σb , (A.19)

with the �rst one given by

σa = 2T

∫ +∞

0

dsG(s)
〈
φ(3)(x(s))∆(s)

〉

= 2T
+∞∑

n=0

∫ +∞

0

dsG(s)
τ
n+1

2

n!

〈
φ(n+3)(x(0))

(
∆(s)√
τ

)n+1
〉
,

and the second one by

σb =

∫ +∞

0

dsG(s)
+∞∑

n=2

2(−1)n

τn!

〈(
−τφ′(x(s)) +

√
τv(s)

)
φ(n+1)(x(s))∆(s)n

〉
. (A.20)

Taylor expanding Eq. (A.20) around x(0), we further express σb as

σb =
+∞∑

n=2

+∞∑

p=0

2(−1)n

p!n!
τ
n+p

2

∫ +∞

0

dsG(s)

〈
∂px
[
−φ′(x)φ(n+1)(x)

]∣∣
x(0)

(
∆(s)√
τ

)n+p
〉

+
+∞∑

n=2

+∞∑

p=0

2(−1)n

p!n!
τ
n+p−1

2

∫ +∞

0

dsG(s)

〈
[
v(s)φ(n+1+p)

]∣∣
x(0)

(
∆(s)√
τ

)n+p
〉
.

Note that in Eq. (A.21), the velocity is still evaluated at time s. This raises however no
di�culty since the v equation of motion can be integrated exactly as

v(s) = v(0)e−s +
√

2De−s
∫ s

0

ds′ es
′
η2(s′) . (A.21)

Finally, in order to be able to use only stationary state averages when computing the entropy
production rate, one needs to express ∆(s) as a function of x(0). This is done by integrating
the equation of motion recursively in powers of τ ,

∆(s)√
τ

= −√τ
∫ s

0

ds′ φ′(x(s′)) +

∫ s

0

ds′
(
v(s′) +

√
2Tη1(s′)

)
. (A.22)
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Applying Eq. (A.22) recursively in powers of τ allows us to compute ∆(s) up to order τ 3
2

∆(s)√
τ

= −√τsφ′(x(0))− τ
∫ s

0

ds′
φ′(x(s′))− φ′(x(0))√

τ
+

∫ s

0

ds′
(
v(s′) +

√
2Tη1(s′)

)

=

∫ s

0

ds′
(
v(s′) +

√
2Tη1(s′)

)
−√τsφ′(x(0))− τφ(2)(x(0))

∫ s

0

ds′
∫ s′

0

ds′′v(s′′)

− τφ(2)(x(0))

∫ s

0

ds′
∫ s′

0

ds′′
√

2Tη1(s′′) +O(τ 3/2)

where the above order in the expansion is enough to collect all terms of order τ 2 in the
entropy production rate. Equation Eq. (A.23) can then be plugged into Eq. (A.20) and
Eq. (A.21). After averaging over the white noises η1(s) and η2(s), this allows us to ob-
tain the entropy production rate, up to order τ 2, solely expressed in terms of stationary
state averages over both x and v. Using Eq. (A.1), we directly obtain Eq. (2.54) of the main
text.

A.4 Numerical methods

To simulate dynamics Eq. (2.2), we used a discretized Heun scheme while dynamics Eq. (2.3)
was integrated exactly using Gillespie’s method [79]. The obtained algorithm iterates as
follows :
µ = exp(−dt/τ) ;
σx =

√
D(1− µ2)/τ ;

Y1 =
√

2Dτ (dt/τ − 2(1− µ) + 0.5(1− µ2))− τD(1− µ)4/(1− µ2) ;
Y2 =

√
τD(1− µ)2/

√
1− µ2 ;

T1 =
√

2Tdt ;
Y = x = 0 ;
v =

√
D/τ ∗ n o r m a l _ d i s t r i b u t i o n ( 0 , 1 ) ;

wh i l e ( t < t o t a l t i m e ) {
η1 = n o r m a l _ d i s t r i b u t i o n ( 0 , 1 ) ;
η2 = n o r m a l _ d i s t r i b u t i o n ( 0 , 1 ) ;
η3 = n o r m a l _ d i s t r i b u t i o n ( 0 , 1 ) ;
Y = τ ∗ v ∗ ( 1 −µ ) + Y1 ∗η2 + Y2 ∗η1 ;
v = v ∗µ + σx ∗η1 ;
x1 = x − d t ∗∂xφ(x) + Y + T1 ∗η3 ;
x += Y + T1 ∗η3 −0 . 5 ∗ d t ∗ ( ∂xφ(x) + ∂xφ(x1) ) ;
t += d t ; }

At step (17), x(t) is stored in the variable x. The steady-state marginal in space of the
distribution Ps(x) was then obtained by recording the particle’s position recurrently into
an histogram. The current J was computed using the distance travelled by the particle
divided by the duration of the simulation : the error bar on J thus corresponds to the
standard deviation. Such a de�nition for the current was heuristically found to converge
faster than computing J = 〈−∂xφ+ v/

√
τ〉 with recurrent recordings.
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Appendix B

Sticky hard spheres in the dilute and
ballistic limit

We reproduce here the appendix of [176] that is associated to Sec.4.1 of the present manuscript.

B.1 Solving the two-body Fokker-Planck equation

In this Appendix, we solve Eq. (4.15) using the method of characteristics for the sticky-
sphere potential. We start by establishing Eq. (4.19) and Eq. (4.20) of the main text which
describe the λ→∞ limit of the stationary distribution. For h > 1/λ, we obtain �rst

w ∂hP + ∂wP = 0 . (B.1)

In the limit λ→∞, we thus recover Eq. (4.19) of the main text. Next, for h < 1/λ and for
any function j(h) independent of λ we de�ne

Γλj (w) =

∫ 1/λ

−∞
dh ehP (h,w)j(h) , (B.2)

so that Eq. (4.15) yields

− v̂0∂wΓλj (w) + v̂0wΓλj (w)− v̂0w
(
P (1/λ, w) j (1/λ) e1/λ

)
+ v̂0wΓλj′(w)

−
∫ 1/λ

−∞
dh eh

Û ′(h)

σ
j′(h)P (h,w) = 0 .

(B.3)

In the limit λ → ∞, the stationary distribution function decays to 0 as h < 0 over scales
O(1/λ) and we have

Γλj (w) −−−→
λ→∞

j(0) lim
λ→∞

∫ 1

−∞

dh

λ
eh/λ P

(
h

λ
, w

)
= f(0) Γ(w) , (B.4)
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provided the previous limit exists. This justi�es the functional form in Eq. (4.18) of the
main text. Hence, on one hand, for a function j de�ned such that j′(0) = 0, Eq. (B.3) yields
Eq. (4.20)

Γ′(w)− wΓ(w) = −w lim
λ→∞

P (1/λ, w) . (B.5)

On the other hand, for a function j such that j(0) = 0, Eq. (B.3) yields the integrated version
of Eq. (4.26)

lim
λ→∞

∫ 1/λ

−∞
dh ehj′(h)

Û ′(h)

l
P (h,w) = v̂0wj

′(0)Γ(w) , (B.6)

which gives the limit of the product V̂ ′(h)P (h,w) as λ → ∞. Eventually, since V̂ ′(h) <
v̂0w0, we obtain from Eq. (B.6)

Γ(w) (w − w0) ≤ 0 , (B.7)

which, given the positivity of Γ(w), yields

Γ(w > w0) = 0 . (B.8)

We are now in position to solve Eq. (4.19) and Eq. (4.20). In Sec. 4.1.3, the same stationary
distribution will be derived in an alternative way directly from the equations of motion. For
h > 0, Eq. (4.19) tells us thatP b(h,w) is constant along the characteristics 2h−w2 = cst that
correspond to deterministic trajectories. These characteristic lines are depicted in Fig. B.1.
We solve the equations with the boundary condition

P b(L, x < 0) = 1 , (B.9)

where L is some large length scale introduced to treat the boundary conditions that will
eventually be sent to in�nity. In the relative-particle-around-a-spherical-obstacle picture
this corresponds to a homogeneous reservoir of incoming particles at h = L. As L is sent
to in�nity this expresses the isotropy of the stationary distribution at large distances. The

w00

L

Figure B.1: Characteristics in the (w, h) plane.

blue domain in Fig. B.1, i.e. {w < 0, h} ∪ {w > 0, 2h− w2 > 0}, is made of characteristics
that intersect the boundary half line {x < 0, h = L}. The quantity P b is thus constant
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Sticky hard spheres in the dilute and ballistic limit

and equal to one in this domain. On the contrary, P b vanishes in the orange ({w > 0, 0 >
2h − w2 > −w2

0}) and green ({w > 0, 2h − w2 < −w2
0}) ones. Indeed, we have �rst

Γ(w > w0) = 0 so that Eq. (4.20) implies P b(0, w > w0) = 0 and the vanishing of P b in the
green domain. Then, we notice that the orange domain corresponds to trajectories in which
the two particles escape from a collision event with 0 < w < w0. However, given the shape
of the potential in Eq. (4.16), this never happens. Eventually, the red line 2h − w2 = −w2

0

in Fig. B.1 plays a special role. Indeed, all trajectories leading to a collision event between
the two particles collapse onto this line as they separate afterwards. We thus look for a
solution of Eq. (4.19) of the form

P b(h,w) = P0(h,w) + f(h) δ

(
h− w2

2
+
w2

0

2

)
Θ(w) , (B.10)

with P0(h,w) a piece-wise continuous function whose form was derived above. Equa-
tion (4.19) then yields

f ′(h) = 0⇒ f(h) = f(0) . (B.11)

The constant f(0) is then found by integrating Eq. (4.20) between w−0 and w+
0 . This yields

f(0) = Γ(w−0 ) . (B.12)

We are now in position to solve Eq. (4.20). For w < 0, P b(0, w) = 1 and we obtain

Γ′(w)− wΓ(w) = −w , (B.13)

so that
Γ(w) = Aew

2/2 + 1 , (B.14)

with A an integration constant that is set to 0 to ensure the integrability of Γ(w) against
e−w

2/2. For 0 < w < w0, we have P b(0, w) = 0 and thus

Γ(w) = ew
2/2 , (B.15)

where the integration constant was chosen to ensure continuity at w = 0. We have there-
fore derived Eq.(4.21)

Pb(h,w) = Θ(h)

[
1−Θ(w)Θ

(
w2

2
− h
)

+ Θ(w)e
w2

0
2 δ

(
h− w2

2
+
w2

0

2

)]
(B.16)

and Eq. (4.22)

Γ(w) = Θ(−w) + Θ(w)Θ(w0 − w)e
w2

2 (B.17)

of the main text.
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B.2 Dynamical Mean-Field with a sticky potential

B.2.1 Trajectories

Here we solve the equation of motion of the rescaled gap h(t) as de�ned in Eq. (4.41), for a
sticky potential such as the one de�ned in Eq. (4.16). The trajectories start as

h01(t) = h0 + ξ0t+ t2/2 , (B.18)

so, the attractive region is reached when h(t) = 1/λ at time

t1 = −ξ0 −
√
ξ2

0 − 2(h0 − 1/λ) . (B.19)

This happens for (ξ0, h0) such that

ξ0 < 0 ∧ h0 <
1

λ
+
ξ2

0

2
. (B.20)

For all other values of (ξ0, h0), the trajectory always stays in the noninteracting region.
We therefore de�ne the new variable α =

√
ξ2

0 − 2(h0 − 1/λ) > 0, so that

t1 = −ξ0 − α . (B.21)

The condition h0 > 1/λ implies α < |ξ0|, and since ξ0 < 0 for the trajectories of our
interest we have

0 < α < −ξ0 ∧ ξ0 < 0 ⇔ α > 0 ∧ ξ0 < −α . (B.22)

Finally, the weight in the integrals reduces to

Dξ0 dh0 e
h0 =

1√
2π

dξ0e
−ξ2

0/2 α dα e1/λ+ξ2
0/2−α2/2 =

e1/λ

√
2π

dξ0 α dα e−α
2/2 . (B.23)

Tangential trajectories

Assuming we have entered the attractive region, we have the Cauchy problem




ḣ(t) = λw0h(t)− w0 + ξ0 + t

h(t1) =
1

λ

, (B.24)

which is valid for 0 < h(t) < 1/λ. The analytical solution is

h1(t) =
1

(λw0)2

[
−1 + λw2

0 + λw0α− λw0(t− t1) + eλw0(t−t1) (1− λw0α)
]
. (B.25)

For later convenience, we de�ne z = λw0α− 1 and x = t− t1. Thus, we can rewrite

h1(x = t− t1) =
1

λw0

[
w0 − x−

z

λw0

(
eλw0x − 1

)]
. (B.26)

There are now two possibilities:
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Sticky hard spheres in the dilute and ballistic limit

1. the trajectory is tangential, hmin(t) > 0 and therefore it crosses the attractive region
and leaves it at a given time t5;

2. the trajectory is colliding, therefore there is a positive x = t− t1 at which h(t) = 0.

We need to solve the equation h1(t) = 0. Its solution leads to

t− t1 =
1

λw0

[
λw2

0 + z −W
(
zeλw

2
0+z
)]

, (B.27)

where W (x) is the Lambert function. The Lambert function has one branch for x > 0 and
two branches for −e−1 < x < 0. Therefore, x exists if

zeλw
2
0+z > −e−1 ⇒ zez > −e−1−λw2

0

⇒ z < z1 = W−1

(
−e−1−λw2

0

)
∨ z > z2 = W0

(
−e−1−λw2

0

) (B.28)

Given z = λw0α− 1 > −1 and z1 < −1, the colliding condition reduces to z > z2. We also
note that x = t − t1 > 0 for every z satisfying this condition. Indeed, if z < 0 there are
two possible values of x, corresponding to the fact that the coe�cient of the exponential in
Eq. (B.26) is positive and therefore the virtual trajectory would cross the barrier twice and
then diverge to +∞; in this case, the primary branch of the Lambert function corresponds
to the �rst intersection and the secondary branch to the second one.
On the other hand, if z > 0 there is only one intersection with the barrier because the
virtual trajectory diverges to −∞, corresponding to the unique branch of W (x) for x > 0.
This result further divides the (ξ0, z) plane into the following cases

−1 < z < z2 ⇒ tangential trajectory
z > z2 ⇒ colliding trajectory

(B.29)

Having found the values of z for which the trajectory is tangential, we can now compute
the exit time t5 (ti with i = 2, 3, 4 will be reserved for colliding trajectories): we need indeed
to solve the equation

h1(t) =
1

λ
⇒ δt15(z) = t5 − t1 =

1

λw0

[z −W−1 (zez)] . (B.30)

The two branches ofW (x) give two solutions: since−1 < z < 0, we have thatW0(zez) = z
and the solution above gives the trivial result t5 = t1; the second branch gives W−1(zez) <
z and therefore a positive result for δt15(z).

So we have the trajectory from t1 (entrance time) to t5 (exit time), where the particle crosses
the attractive region and contributes to the kernels.

Colliding trajectories

We now compute the colliding trajectories, which require ξ0 < −α = −(1 + z)/(λw0) and
z > z2.
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Attractive region 1: zone 12 The motion in the attractive region towards the barrier
has been already computed in Eq. (B.26). We recall the trajectory from Eq. (B.26) and the
colliding time t2 from Eq. (B.27), i.e.

h1(x = t− t1) =
1

λw0

[
w0 − x−

z

λw0

(
eλw0x − 1

)]
. (B.31)

δt12(z) = t2 − t1 =
1

λw0

[
λw2

0 + z −W0

(
zeλw

2
0+z
)]

. (B.32)

Repulsive region: zone 23 The motion in the repulsive region needs the solution of the
Cauchy problem {

ḣ(t) = −λw0h(t)− w0 + ξ0 + t

h(t2) = 0
(B.33)

Its solution reads

h2(x = t− t2) =
1

λw0

[
x− w(z)

λw0

(
1− e−λw0x

)]
, (B.34)

being w(z) = 2 +W0

(
zeλf

2
0 +z
)

. Hence the exit time:

δt23(z) = t3 − t2 =
1

λw0

[
w(z) +W0

(
−w(z)e−w(z)

)]
. (B.35)

Since −w(z) < −1, then W−1(−we−w) = −w so the secondary branch gives the trivial
solution t3 = t2; therefore we choose the primary branch W0 into Eq. (B.35).

Attractive region 2: zone 34 For t > t3, the particle enters back the attractive region,
i.e. {

ḣ(t) = λw0h(t)− w0 + ξ0 + t

h(t3) = 0
, (B.36)

yielding the solution

h3(x = t− t2) =
1

λw0

{
−x+

1

λw0

[
2 +W0

(
−w(z)e−w(z)

)] (
eλw0x − 1

)}
. (B.37)

The exit time at which h(t) = 1/λ is given by

δt34(z) = t4 − t3 = − 1

λw0

{
w34(z) + λw2

0 +W−1

[
−w34(z)e−(w34(z)+λw2

0)
]}

, (B.38)

having called w34(z) = 2 +W0

(
−w(z)e−w(z)

)
. The secondary branch W−1 of the Lambert

function has been chosen because of the condition δt34 > 0.

For t > t4, the particle leaves the attractive region and diverges to h → ∞ without
giving any further contribution to the kernels.
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Sticky hard spheres in the dilute and ballistic limit

B.2.2 Fluctuating response

Before proceeding with the computation of the kernels, we need to compute the �uctuating
response H(t, s) in any of the previously de�ned zones. In the dilute limit (�rst iteration),
the dynamics of H(t, s) in Eq. (4.33) reduces to (working in rescaled time)

∂

∂t
H(t, s) = −Û ′′(h(t)) [H(t, s)− δ(t− s)] . (B.39)

We know that H(t, s) = 0 ∀t < s because of causality. The delta term in the rhs is
equivalent to an initial condition H(t = s+, s) = Û ′′(h(s)). Therefore, Eq. (B.39) has the
general solution

H(t, s) =

{
0 t < s

Û ′′(h(s)) exp
[
−
∫ t
s

dt′Û ′′(h(t′))
]

t > s
. (B.40)

The potential de�ned in Eq. (4.16) has a piece-wise constant second derivative; we can
compute H(t, s) as a piece-wise de�ned function depending only on the time zones. Since
H(t, s) > 0 only if s is in a region where interaction is present, we can restrict the com-
putation to these zones. Furthermore, the de�nition ofMR(t, s) in Eq. (4.32) shows that
there is a contribution only at times t where the interaction is present, then we will con-
sider only the cases t1 < s < t < t5 (tangential trajectories) and t1 < s < t < t4 (colliding
trajectories).

Tangential trajectories

We have only one time zone, so t1 < s < t < t5. In this region the second derivative is
constant and has Û ′′(h) = −λw0, so

H15(t, s) = −λw0e
λw0(t−s) t1 < s < t < t5 . (B.41)

Colliding trajectories

Following the same reasoning as above and using Eq. (B.40), we can compute H(t, s) for
any possible combination of t1 < s < t < t4, which will include “self” terms (when s and
t are in the same time zone) and “mixed” terms (when they belong to di�erent zones). So,
for the self terms we �nd

H12(t, s) = −λw0e
λw0(t−s) t1 < s < t < t2 , (B.42)

H23(t, s) = λw0e
−λw0(t−s) t2 < s < t < t3 , (B.43)

H34(t, s) = −λw0e
λw0(t−s) t3 < s < t < t4 , (B.44)

and for the mixed terms
H13(t, s) = −λw0e

−λw0(t−2t2+s) t1 < s < t2 < t < t3 , (B.45)
H14(t, s) = −λw0e

λw0(t−2t3+2t2−s) t1 < s < t2 < t3 < t < t4 , (B.46)
H24(t, s) = λw0e

λw0(t−2t3+s) t2 < s < t3 < t < t4 . (B.47)
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B.2.3 Kernels

We now compute the dynamical kernels to the �rst order in the rescaled density ϕ̂, starting
from the de�nitions given in Eq. (4.32).

First, we note that these can be computed as the sum of the kernels computed separately
on the di�erent time zones, namely

κ(t) = κ15(t) + κ12(t) + κ23(t) + κ34(t) , (B.48)

and

MR(t, s) =M15
R (t, s)+M12

R (t, s)+M23
R (t, s)+M34

R (t, s)+M13
R (t, s)+M14

R (t, s)+M24
R (t, s) .

(B.49)
Second, as mentioned in Eq. (4.48) we assume that the retarded memoryMR(t, s) is short
ranged because of the vanishing duration of a collision in the hard-core limit; we are there-
fore interested in computing the sti�ness γ(t) and the friction correction χ1(t), de�ned
as

γ(t) = κ(t)−
∫ t

0

dsMR(t, s) = κ(t)− χ0(t)

χ1(t) =

∫ t

0

dsMR(t, s) (t− s)
(B.50)

We expect that γ(t) vanishes in the steady state, so that h(t) is not con�ned at long times
(otherwise we would be in the glassy phase at any density) and that χ1(t) goes to a constant
depending on the density, giving us the �rst-order density correction to the activity and to
the MSD.

We will show in Appendix B.2.4 that higher order terms do not contribute to the dy-
namics.

Change of variables

We perform the computation of the kernels in the (x, z) plane, being x = t − ti for every
time zone starting in ti and z = λw0α− 1, as de�ned in Sec. B.2.1. Since t1 = −ξ0−α > 0,
then ξ0 = −α− t1 = −(1 + z)/(λw0)− t1.
When performing the integrals over ξ0 and z, we will choose the normal region z > −1
and ξ0 < −(1 + z)/(λw0). The latter condition implies t1 > 0.

This choice is particularly convenient to implement the time zone conditions e.g. Θ(ti <
t < tj). The former actually translates to 0 < x < δti,j in every time region, where one
typically has j = i + 1. So we move from the integration over ξ0 to the integration over
x = t− ti = t− δt1i − t1 = t− δt1i + ξ0 + (1 + z)/(λw0).
The condition ξ0 < −(1 + z)/(λw0) then implies x < t − δt1i. The typical times δt1i are
those computed in Appendix B.2.1; but since we are interested in the long-time limit, the
assumption t →∞ automatically satis�es this condition; hence the integration region for
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α > 0, ξ0 < −α and ti < t < tj is equivalent in the long time limit to1

z > −1 , 0 < x < δtij(z) . (B.51)

For tangential trajectories, we have −1 < z < z2, while for colliding trajectories we have
z > z2.

The Gaussian weight in the integral then becomes

ϕ̂

2

e1/λ

√
2π

α e−α
2/2 dα dξ0 =

ϕ̂

2

e1/λ

√
2π

1 + z

(λw0)2
e−(1+z)/(2(λw0)2) dz dx ≡ I0(z) dz dx . (B.52)

With all these precautions we can directly plug into the kernel integration the trajectories
computed as functions of z, x in Sec. B.2.1. The computation is tedious but straightforward,
and we will repeatedly apply the following formulas:

κij =

∫
dz I0(z)

∫ δtij(z)

0

dx
[
Û ′′(h(t)) + Û ′(h(t))

]
,

χijn =

∫
dz I0(z)

∫ δtij(z)

0

dx Û ′′(h(t))

∫ t

0

dsHij(t, s)(t− s)n θ(ti < s < t) ,

(B.53)

where ij are the time zone indices, integrating over the appropriate domain of z and recall-
ing that t = ti + x.

Tangential trajectories

For tangential trajectories we only have one time zone t1 < t < t5 and the tangential
condition −1 < z < z2: using Eqs. (B.26) and (B.41) we �nd

γ15 =

∫ z2

−1

dz I0(z)

[
− z

λw0

δt15(z) +
1

2
δt215(z) +

(
−1 +

z

(λw0)2

)(
eλw0δt15(z) − 1

)]
,

(B.54)
and

χ15
1 =

∫ z2

−1

dz I0(z)

[
δt15(z) +

2

λw0

+

(
δt15(z)− 2

λw0

)
eλw0δt15(z)

]
. (B.55)

Colliding trajectories

We have now several time zones and the collisional condition z > z2. We explicitly write
the result for every time zone following Eq. (B.53).

1If one wants to recover the time dependence of the kernels, it is su�cient to substitute the upper bound
of the integration over x with min(δtij(z), t− δt1i)(z).
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Sti�ness terms:

γ12 =

∫ +∞

z2

dz I0(z)

[
− z

λw0

δt12(z) +
1

2
δt212(z) +

(
−1 +

z

(λw0)2

)(
eλw0δt12(z) − 1

)]
,

γ23 =

∫ +∞

z2

dz I0(z)

[(
w0 −

w(z)

λw0

)
δt23(z) +

1

2
δt223(z) +

(
1 +

w(z)

(λw0)2

)(
1− e−λw0δt23(z)

)]
,

γ34 =

∫ +∞

z2

dz I0(z)

[(
w0 +

w34(z)

λw0

)
δt34(z) +

1

2
δt234(z) +

(
−1− w34(z)

(λw0)2

)(
eλw0δt34(z) − 1

)]
,

γ13 =

∫ +∞

z2

dz I0(z)
(
eλw0δt12(z) − 1

) (
1− e−λw0δt23(z)

)
,

γ14 = −
∫ +∞

z2

dz I0(z) e−λw0δt23(z)
(
eλw0δt34(z) − 1

) (
eλw0δt12(z) − 1

)
,

γ24 =

∫ +∞

z2

dz I0(z)
(
eλw0δt34(z) − 1

) (
1− e−λw0δt23(z)

)
.

(B.56)

Friction correction:

χ12
1 =

∫ +∞

z2

dz I0(z)

[
δt12(z) +

2

λw0

+

(
δt12(z)− 2

λw0

)
eλw0δt12(z)

]
,

χ23
1 =

∫ +∞

z2

dz I0(z)

[
δt23(z)− 2

λw0

+

(
δt23(z) +

2

λw0

)
e−λw0δt23(z)

]
,

χ34
1 =

∫ +∞

z2

dz I0(z)

[
δt34(z) +

2

λw0

+

(
δt34(z)− 2

λw0

)
eλw0δt34(z)

]
,

χ13
1 =

∫ +∞

z2

dz I0(z)
[
−δt12(z)eλw0δt12(z) − δt23(z)e−λw0δt23(z) + δt13(z)e−λw0[δt23(z)−δt12(z)]

]
,

χ14
1 =

∫ +∞

z2

dz I0(z) e−λw0δt23(z)

[
− 2

λw0

+ δt23(z) +

(
2

λw0

− δt13(z)

)
eλw0δt12(z)

+

(
2

λw0

− δt24(z)

)
eλw0δt34(z) +

(
− 2

λw0

+ δt14(z)

)
eλw0(δt12(z)+δt34(z))

]
,

χ24
1 =

∫ +∞

z2

dz I0(z)
[
−δt23(z)e−λw0δt23(z) − δt34(z)eλw0δt34(z) + δt24(z)eλw0[δt34(z)−δt23(z)]

]
.

(B.57)

B.2.4 Hard-sphere limit

The expressions written above are exact in the long-time limit. To obtain an analytical
expression, we move to the hard-sphere limit λ → ∞, which we use to approximate the
behavior of the sti�ness and of the friction correction.

The analytical computation requires the approximation of the Lambert function W in
the di�erent intervals of the integration over z. We computed the integrations in the pre-
vious equations both analytically and numerically; we omit the details of the computation
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because they are tedious. Altogether, the only terms that survive when λ→∞ are

γ15 = −γ23 = −w2
0/2 , (B.58)

χ15
1 =

ϕ̂

6
√

2π
w3

0 , χ23
1 =

ϕ̂

4
. (B.59)

This �nal result is crucial and tells us that (i) the elastic response γ(t) vanishes in the long-
time limit, and the particles can di�use; (ii) the friction correction χ1 leading to the e�ective
self-propulsion has two contributions, one coming from the purely repulsive interaction —
χ23

1 — and the other from the attractive region —χ15
1 — , so that one �nally �nds

χ1 =
ϕ̂

4

(
1 +

√
2

3
√
π
w3

0

)
. (B.60)

Vanishing terms

Here we sketch the reason why we stopped to the �rst-order in the expansion of the inte-
grated response in Eq. (4.48): when we need to compute the integral

∫ t
ti

dsH(t, s)(t− s)n,
the �uctuating response has an exponential behavior and decays with a characteristic time
(λw0)−1. Therefore, when computing the instantaneous response κ and the zero-th order
contribution χ0, these both diverge separately as O(λ) in the hard-sphere limit but their
di�erence has a �nite limit. When computing χ1, the �rst degree term (t−s) in the integral
lowers one degree in λ and its contribution is therefore �nite.

This scheme repeats when computing χ2, and lowering another degree in λ implies
χ2 = O(λ−1), therefore all the χn vanish in the hard-sphere limit for n ≥ 2.
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Appendix C

Franz-Parisi approach to the glass tran-
sition with the potential inferred from
active hard spheres

In this appendix, we show that equilibrium colloidal particles whose pair-potential is given
in Eq. (4.140) of the main text experience a dynamical glass transition at the same density
ϕ̂d as particles interacting through the standard Baxter potential

e−β̂Ûp(h) = θ(h) +
1

2
δ(h) , (C.1)

i.e. with a �at bulk distribution, for which ϕ̂d was computed in [190, 189] and reads ϕ̂d = 4.
In the Franz-Parisi approach [63], the ergodicity breaking is due to the appearance of long-
lived metastable states. The latter is probed by studying the free energy of the system
constrained to be at a distance a from a given liquid con�guration which is then averaged
out. At small densities, this average free energy, also called the Franz-Parisi potential, has
a unique minimum at a→∞ suggesting that the system can di�use away from any given
liquid con�guration. At higher densities, the existence of a local minimum at �nite a is
the sign of a caging e�ect: the system remains trapped in the vicinity of the reference
liquid con�guration. The smallest density at which this happens is the dynamical glass
transition one ϕ̂d. We stress that in the limit of in�nite dimension, the predicted ϕ̂d in
the Franz-Parisi approach equals the density at which the di�usion coe�cient of the same
equilibrium colloids vanishes [136].

Concretely, we want to �nd out ϕ̂d such that

ϕ̂−1
d = max

a

[
−a
∫

dzez∂aq(a, z) ln q(a, z)

]
(C.2)

and what the corresponding value of a is. In the above formula, we have introduced the
function q de�ned by

q(a, z) =

∫
dhg(h)

e−
(h−z−a)2

4a√
4πa

(C.3)
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The function g(h) is the pair correlation function expressed in terms of the reduced space
variable h = d r−σ

σ
. In our case, we have g(h) = θ(h)f(h)+ 1

2
δ(h) with the bulk contribution

f(h) =
e−h√
4πh

+
erf(
√
h) + 1

2
. (C.4)

Numerical inspection of the expression in the right-hand side of Eq. (C.2) shows that the
maximum is reached at a = 0 as in [190]. In the following, we therefore focus on the
behavior of the above mentioned expression at leading order for a → 0. Following [190],
we �nd it convenient to rewrite q as

q(a, z) =

∫
dh′g(h′

√
a)

e−
(h′−z′−

√
a)2

4√
4π

=

∫
dh′f(h′

√
a)

e−
(h′−z′−

√
a)2

4√
4π

+
1

2
√
a

e−
(z′+

√
a)2

4√
4π

=O(a−1/4) +
1

2
√
a

[
e− z

′2
4√

4π

]
(C.5)

with z′ = z/
√
a and g(h′

√
a) = θ(h′)f(h′)+ 1

2
√
a
δ(h′) and f(h′) = 1

2
+ erf(a1/4

√
h′)

2
+ e−

√
ah′√

4πh′a1/4 .
As a → 0 the leading contribution comes from the coe�cient of the surface contribution
δ(h′). The condition for the structure captured by the function f to be negligible is that
x2f ′(x)→ 0 as x→ 0. Hence, to leading order as a→ 0, we have that

ln q(a, z′) = −1

2
ln a+ cst− z′2

4
+ o(1) (C.6)

and

∂aq(a, z
′) = − 1

4a3/2

e− z
′2
4√

4π

(
1− z′2

2

)
+ o(a−3/2) (C.7)

hence, to leading order as a→ 0,

−a
∫

dzez∂aq(a, z) ln q(a, z) =− 1

4

∫
dz′

e− z
′2
4√

4π

[(
1− z′2

2

)
z′2

4

]

=
1

4
,

(C.8)

as the contribution given by the other terms of the log vanishes. Therefore, colloidal par-
ticles interacting through the dressed Baxter potential potential in Eq. (4.140) undergo a
dynamical glass transition at ϕ̂d = 4 with an associated cage size of 0 as do colloidal parti-
cles interacting via the standard Baxter one of Eq. (C.1). Remark that ϕ̂d is also the density
at which the e�ective self-propulsion of the original RTP dynamics is predicted to vanish
in our approximate resummation scheme.
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Effective diffusion constant

In this appendix, we show the relation that exists between the long-time di�usion constant
and the e�ective self-propulsion speed within our approximate resummation scheme of
the hierarchy (see Sec. 4.2) in the ultraballistic limit. We consider an assembly of RTPs
interacting via a hard sphere potential and initialized in the stationary state. We consider
the in�nite dimensional limit and the scalings are those of Sec. 4.2. For each particle we
split its motion between a longitudinal contribution along ui(t) and a transverse one,

dri
dt

= v0ui(t)−
∑

j 6=i
∇riU(ri − rj) ,

= ṙ‖i (t)ui(t) + ṙ⊥i (t) ,

(D.1)

with

ṙ‖i =

[
v0 −

∑

j 6=i
∇riU(ri − rj) · ui(t)

]
, (D.2)

the longitudinal velocity, and

ṙ⊥i = −
∑

j 6=i
∇riU(ri − rj) +

∑

j 6=i
(∇riU(ri − rj) · ui(t))ui(t) , (D.3)

the transverse one. In the following, the notation 〈. . . 〉 denotes an average over all the
degrees of freedom of the system but the instantaneous self-propulsion vector ui of particle
i. At any time t, the probability distribution of theN -body system is the stationary one and
hence the mean longitudinal velocity is given by,

〈
ṙ‖i (t)

〉
= v(ϕ̂) . (D.4)
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We now evaluate its one-time �uctuations. We have,

〈
ṙ‖ 2
i (t)

〉
− v(ϕ̂)2 = v2

0 + 2v0(v(ϕ̂)− v0)− v(ϕ̂)2

+

〈∑

j 6=i

∑

k 6=i
[∇riU(ri − rj) · ui(t)] [∇riU(ri − rk) · ui(t)]

〉
,

= −(v0 − v(ϕ̂))2 +
∑

j 6=i

∑

k 6=i
k 6=j

〈[∇riU(ri − rj) · ui(t)] [∇riU(ri − rk) · ui(t)]〉

+
∑

j 6=i

〈
[∇riU(ri − rj) · ui(t)]2

〉
.

(D.5)

The last term yields contributions that are of order O(d2) and can therefore be dropped in
the large d limit as all the other terms scale as O(d3). Evaluating the second one amounts
at computing

ρ2

∫ ∫
drdr′

du
Ωd

du′

Ωd

g(3)(0,u1; r,u; r′,u′) [∇rU(r) · u1] [∇r′U(r′) · u1] ,

=

(
ρ

∫
dr

du
Ωd

g(2)(0,u1; r,u) [∇rU(r) · u1]

)2

,

= (v0 − v(ϕ̂))2 .

(D.6)

at leading order and where we have taken bene�t from the weak correlations in the large
d limit between di�erent pairs of particles. Therefore at leading order,

〈
ṙ‖ 2
i (t)

〉
− v(ϕ̂)2 = 0 . (D.7)

The �uctuations of the longitudinal velocity are hence negligible. Remark that this is a very
general statement depending only on the scalings of the in�nite dimensional limit and the
weak correlations between the di�erent pairs of particles, i.e. on the equality

g(3)(0,u1; r,u; r′,u′) = g(2)(0,u1; r,u)g(2)(0,u1; r′,u′)g(2)(r,u; r′,u′)+O

(
1√
d

)
. (D.8)

We now turn to the study of the transverse velocity. We have the �rst moment

〈
ṙ⊥i (t)

〉
= 0 . (D.9)
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At equal times, the second moment is given by

〈
ṙ⊥i (t) · ṙ⊥i (t)

〉
=

〈
−
∑

j 6=i

∑

k 6=i
[∇riU(ri − rj) · ui] [∇riV (ri − rk) · ui]

+
∑

j 6=i

∑

k 6=i
∇riU(ri − rj) ·∇riU(ri − rk)

〉

= −(v0 − v(ϕ̂))2 +

〈∑

j 6=i
∇riU(ri − rj)2

+
∑

j 6=i

∑

k 6=i
k 6=j

∇riU(ri − rj) ·∇riU(ri − rk)

〉

(D.10)

with
〈∑

j 6=i
∇riU(ri − rj)2

〉
= ρ

∫
dr′

du′

Ωd

g(0,u; r′,u′)∂r′U(r′)2

= v2
0

ϕ̂

4
.

(D.11)

Eventually,
〈∑

j 6=i

∑

k 6=i
k 6=j

∇riU(ri − rj) ·∇riU(ri − rk)

〉

= ρ2

∫
dr dr′

du du′

Ω2
d

g(3)(0,u1; r,u; r′,u′)∇r′U(r′) ·∇rU(r)

= ρ (v(ϕ̂)− v0)

∫
dr

du
Ωd

g(2)(0,u1; r,u)∇rU(r) ·
[
u1 +

∇rU(r)
v0

]

= 0 .

(D.12)

Hence the one-time �uctuations of the transverse velocity are given by
〈
ṙ⊥i (t) · ṙ⊥i (t)

〉
= v(ϕ̂)(v0 − v(ϕ̂)) (D.13)

They vanish at both ϕ̂ = 0 and ϕ̂ = ϕ̂cr, which is to be expected. Taking advantage of
the absence of �uctuations in the longitudinal velocity, we can write in stationary state the
e�ective dynamics of the one particle process as

dri
dt

= v(ϕ̂)ui(t) + ṙ⊥i (t) (D.14)

with 


〈ui(t) · ui(t′)〉 = e−

|t−t′|
τ

〈
ṙ⊥i (t) · ṙ⊥i (t′)

〉
= v(ϕ̂)(v0 − v(ϕ̂))f(t− t′) , with f(0) = 1

(D.15)
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Following Sec. 4.1, let τ0 be the typical time over which the transverse motion is correlated.
In Sec. 4.1, we found at �rst order in ϕ̂ that τ0 was given by the duration of a collision.
In this scalings with ζ = 1, this corresponds to a time scale of order O(1/d2). On the
contrary, the longitudinal motion is correlated over the time scale τ . In the ultraballistic
limit, τ = τ̂ /d � τ0. In this limit, the long time di�usion constant is thus expected to be
dominated by the contribution coming from the longitudinal motion i.e.

D =
v(ϕ̂)2τ

d
, (D.16)

in line with our �nding that v(ϕ̂) vanishes at a density ϕ̂cr equal to the dynamical glass
transition one obtained from the Franz-Parisi approach. Our computation suggests that the
relation in Eq. (D.16) holds only in the limit where the persistence time is much larger than
the interaction time between two particles. This would deserve further investigations.
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Appendix E

Nonlinear analogue of the May-Wigner
instability transition: a replica calcu-
lation

In this appendix, we show how a replica formulation of the absolute value of a determinant
similar to that used in Sec. 4.3.4 allows to recover the �ndings of [70] about the number of
stationary points in large random dynamical systems. Here we consider anN -dimensional
dynamical system with degrees of freedom xi for i = 1, . . . , N evolving through

dxi
dt

= −µxi + fi(x1, . . . , xN) , (E.1)

where the �eld f involves both gradients and solenoidal contributions,

fi(x) = ∂xiV (x) +
1√
N

N∑

j=1

∂xjAij(x) , (E.2)

with Aij antisymmetric for the associated contribution in the equation of motion to be
divergence free. Both V (x) and Aij(x) are choosen to be independent Gaussian zero mean
random �elds with correlations

{
〈V (x)V (y)〉 = v2ΓV

(
|x− y|2

)
, Γ′′V (0) = 1 ,

〈Aij(x)Amn(y)〉 = a2ΓA
(
|x− y|2

)
(δimδjn − δinδjm) , Γ′′V (0) = 1 ,

(E.3)

We eventually introduce the parameter τ = v2

v2+a2 that measures the relative strength of the
gradient and solenoidal terms and m = µ

2
√
v2+a2

√
N

comparing the amplitude of the linear
contribution in Eq. (E.1) to the non-linear ones. The main result of [70] is that 〈N〉, the
mean number of stationary points of the dynamical system, undergoes at large N a phase
transition from a regime where it is O(1) at small m, i.e. in a regime where the harmonic
potential dominates the dynamics, to a regime where it scales exponentially with the system
size N . This is this result that we seek to recover using similar transformations to that of
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Sec. 4.3.4. In a �rst part, we will actually use a slightly di�erent representation than that of
Sec. 4.3.4 as the matrix determinant we have to evaluate is that of a non-symmetric matrix.
In the end, we study the τ = 1 case corresponding to a purely gradient �ow. This will
allow us to use the same methods as in Sec. 4.3.4. In particular, we will show that the (p̂, q̂)
symmetry breaking uncovered in the study of the UCNA phase diagram is associated in
this context to the proliferation of an exponential number of stationary points.

Following [70], the mean number of stationary points of Eq. (E.1) can be obtained from the
Kac-Rice formula and reads

〈N〉 =

〈∣∣∣∣det

(
δij +

Jij
µ

)∣∣∣∣
〉
, (E.4)

The Jij’s are the coe�cients of an N ×N zero mean Gaussian matrix with correlations

〈JijJkl〉 = α (δikδjl + τ (δijδkl + δilδjk)) , (E.5)

and withα = 2
√
v2 + a2. We compute Eq. (E.4) through a replica calculation of the absolute

value of a determinant. First, we use the identity valid for any real matrix

|det (1+ J/µ)| = lim
ε→0+

lim
n→0

In−1
ε , (E.6)

with

Iε =

∫ N∏

i=1

dφidϕi
2π

e− ε2φ2− ε
2
ϕ2+i

∑N
i,j=1 φi(δij+Jij/µ)ϕj . (E.7)

We therefore obtain,
〈N〉 = lim

ε→0+
lim
n→0

〈
In−1
ε

〉
. (E.8)

〈In−1
ε 〉 is then computed for n ∈ N with n > 1 and 〈N〉 is obtained through analytical

continuation to n = 0. The ability to perform this analytical continuation (e.g. à la Carlson)
will not be checked here. Furthermore, as is usual in the use of the replica trick, we assume
the limits limN→∞ and limε→0+ limn→0 can be commuted. Hereafter, the di�erent replicas
are labeled by a, b. We obtain,

〈
In−1
ε

〉
=

∫ N∏

i=1

n−1∏

a=1

dφai dϕ
a
i

2π
exp

{
N

(
− ε

2

∑

a

qaa −
ε

2

∑

a

paa + i
∑

a

raa

− 1

2m2

∑

a,b

(
qabpab + τ (raarbb + rabrba)

))}
,

=

∫

{S>0}

∏

a≤b
dqabdpab

∏

a,b

drab C̃N,n(S) exp

{
N

(
(n− 1) +

1

2
ln detS

− ε
2

∑

a

qaa −
ε

2

∑

a

paa + i
∑

a

raa −
1

2m2

∑

a,b

(
qabpab + τ (raarbb + rabrba)

))}
,

=

∫

{S>0}

∏

a≤b
dqabdpab

∏

a,b

drab C̃N,n(S) eN(n−1)f(S) ,

(E.9)
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which de�nes f(S) and where

pab =
1

N

∑

i

ϕaiϕ
b
i ,

qab =
1

N

∑

i

φai φ
b
i ,

rab =
1

N

∑

i

ϕai φ
b
i .

(E.10)

Eventually, S is the 2(n− 1)× 2(n− 1) symmetric matrix de�ned by block as,

S =

[
pab rab
rba qab

]
. (E.11)

The integration domain is restricted to positive de�nite S matrices. Eventually, in the limit
N →∞, the C̃N,n contribution coming from the Jacobian to go from the �elds variables to
the matrix of scalar products S reads [72]

ln C̃N,n(S) =
(n− 1)(2n− 1)

2
ln
N

2
− (n− 1)(2n− 3)

2
lnπ − 2n− 1

2
ln detS

− (n− 1) ln(2π) + o(1) ,

=
n→0

1

2
ln
N

2
− 3

2
ln π +

1

2
ln detS + ln 2π + o(1) .

(E.12)

Going from the �elds variables to the matrix S allows us in the end to evaluate the integral
in Eq. (E.9) using the saddle-point approximation.

E.0.1 Saddle point equations

We denote S−1 the inverse of S by

S−1 =

[
p̃ab r̃ab
r̃ba q̃ab

]
. (E.13)

The saddle point equations associated to Eq. (E.9) then read

p̃ab −
1

m2
qab − εδab = 0 ,

q̃ab −
1

m2
pab − εδab = 0 ,

r̃ab + iδab −
τ

m2

(
δab
∑

c

rcc + rba

)
= 0 .

(E.14)
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E.0.2 Replica symmetric, block diagonal ansatz

We look for a solution of the saddle point equations Eq. (E.14) under the form of a replica
symmetric block diagonal matrix

S =

[
p1 r1
r1 q1

]
. (E.15)

Eq. (E.14) then reduces to

q

pq − r2
− q

m2
− ε = 0 ,

p

pq − r2
− p

m2
− ε = 0 ,

r

pq − r2
− i+

nτ

m2
r = 0 .

(E.16)

Interestingly, in the limit n → 0, the parameter τ disappears from the saddle point equa-
tions, thus suggesting the absence of τ dependence in the exponential weight of 〈N〉. There
exists three triplets of solutions, each of them with p = q. At exactly ε = 0, there is a degen-
eracy along the hyperbola pq = cst of the saddle point equations. Lifting the degeneracy is
the purpose of the small ε parameter. As ε→ 0, the solutions to the saddle point equations
read

• p = q = 0 and r = i ,

• p = q = ±
√
m2 −m4 and r = im2 .

As n→ 0 and ε→ 0 the saddle point value of the exponential weight respectively write

• f(p = q = 0, r = i) = 0 ,

• f(p = q = ±
√
m2 −m4, r = im2) = 1−m2

2
+ lnm .

Note that ∀m > 0, (1−m2)/2 + lnm < 0 and that the limit n→ 0 completely washes out
the dependence on τ .

E.0.3 Saddle point selection

Here, we show that for m > 1 the �rst branch of the solution is selected while it is the
second one that is selected for m < 1. Restricting the integral in Eq. (E.9) to the (p, r)
plane, we obtain

〈
In−1
ε

〉
∼

N→∞

∫ +∞

0

dp

∫ p

−p
dr eN(n−1)g(p,r) (E.17)
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with

g(p, r) = 1 +
1

2
ln(p2 − r2)− εp+ ir − 1

2m2

(
p2 + nτr2

)

=
ε→0
n→0

1 +
1

2
ln(p2 − r2) + ir − p2

2m2

(E.18)

We change variables and introduce

p = x cosh θ ,

r = x sinh θ ,
(E.19)

so that

〈
In−1
ε

〉
∼

N→∞

∫ +∞

0

dx

∫ ∞

−∞
dθ exp

[
N(n− 1)

(
1 + ln x+ ix sinh θ − x2

2m2
cosh2 θ

)]
.

(E.20)
Note that in Eq. (E.20), for the sake of simplicity of the expressions, we have already an-
ticipated the n → 0 limit in the function g but that, in order to get the proper analytical
continuation to n = 0, we keep working with N(n − 1) > 0. The saddle points of the θ
integral are given by

θ = i
(π

2
+ sπ

)
, s ∈ N (E.21)

or

θ = i arcsin

(
m2

x

)
+ 2isπ, s ∈ N, if m

2

x
< 1 , or

θ = i

(
π − arcsin

(
m2

x

))
+ 2isπ, s ∈ N, if m

2

x
< 1 , or

θ = ±arccosh
(
m2

x

)
+ i
(π

2
+ sπ

)
, s ∈ N, if m

2

x
> 1 .

(E.22)
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Fig.1. Lines of steepest descent/ascent of
Re (g) for m2/x < 1.
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Fig.2. Lines of steepest descent/ascent
of Re (g) for m2/x > 1.
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In both case, the θ integration path is deformed to the steepest descent path of 0 imaginary
part passing through the saddles that can be seen respectively in Fig.1 and Fig.2. Notice that
the saddle at θ = iπ/2 is only attained for x < m2. We therefore obtain at the exponential
level

〈
In−1
ε

〉
∼

N→∞

∫ +∞

m2

dx exp

[
N(n− 1)

(
1− m2

2
+ lnx− x2

2m2

)]

+

∫ m2

0

dx exp

[
N(n− 1) (1 + lnx− x)

]

+

∫ m2

0

dx exp

[
N(n− 1)

(
1− m2

2
+ lnx− x2

2m2

)]
.

(E.23)

Therefore, if m > 1, the result is dominated by the second integral and we have

〈N〉 ∼ 1 , (E.24)

and if m < 1, the result is dominated by the �rst one and we get after taking the n → 0
limit

〈N〉 ∼ exp

(
−N

(
1−m2

2
+ lnm

))
. (E.25)

This is the main result of [70] showing a transition in the mean number of stationary points
from a regime where it is O(1) at m < 1 to a regime where it scales exponentially with the
system size at m > 1. We stress here that at the exponential level N does not depend on
τ , i.e. on the way the non-linearities are distributed between the solenoidal and potential
contributions. We now attempt to recover the multiplicative constants appearing in front
of these exponential contributions.

E.0.4 Multiplicative constants

In the limit N → ∞, we assume the integral in Eq. (E.9) is dominated by a single saddle
point S0 which functional form was discussed earlier. We therefore obtain

〈
In−1
ε

〉
=

(
2π

N

) (n−1)(2n−1)
2

(−∆f (S0))−1/2 C̃N,n(S0)eN(n−1)f(S0)
[
1 +O(N−1)

]
,

=
n→0

2
√

detS0 (−∆f (S0))−1/2 e−Nf(S0)
[
1 +O(N−1)

]
,

(E.26)

with ∆f (S0) the value of the determinant of the Hessian of f at the saddle point. Note that
the Hessian is here the Hessian in the full replica space. At the saddle point selected at
m > 1, we have

detS0 = 1 , (E.27)
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and we conjecture from a �nite n inspection that the determinant of the Hessian writes

∆f (S0) = (−1)n−1 (m2 − 1)
n(n−1)

(m2 − nτ)(m2 − τ)n(n−2)

4n−1m2+n(2+4(n−2))
,

=
n→0
−4 .

(E.28)

Therefore, we get for m > 1
〈N〉 = 1 . (E.29)

Furthermore, for m < 1, we have

detS0 = m2(n−1) =
n→0

m−2 . (E.30)

We now need to evaluate the determinant of the Hessian at the saddle point solution of
Eq. (E.14) at �nite ε. At ε = 0, it vanishes due to the aforementioned degeneracy of the
saddle point equations. The ε dependence is as expected however washed out by the con-
tinuation to n = 0. At the �rst, non vanishing order in ε, we conjecture from a �nite n
inspection that

∆f (S0) = (−1)n−1ε
n(n−1)

2
(1 + nτ)(1− τ)

(n−2)(n−1)
2 (1 + τ)

(n−2)(n+1)
2 (1−m2)

n(n−1)
4

2
(n−1)(4−n)

2 m
3(n−1)+7(n−1)2

2

,

=
n→0
− 4(1− τ)

m2(1 + τ)
.

(E.31)

Hence we obtain for m < 1,

〈N〉 =

√
1 + τ

1− τ e−N
(

1−m2

2
+lnm

)
. (E.32)

Notice that there is a
√

2 discrepancy between our result and that of [70]. This might be
due to the contributions of other saddle points. In a private communication, Prof. Fyodorov
pointed out to me that it was not the �rst time troubles appeared at the level of the �uc-
tuation determinant when trying to recover exact results from random matrix theory with
the use of the replica trick [71].

E.0.5 The gradient-�ow case τ = 0

We now restrict our attention to the gradient �ow case τ = 0 studied �rst in [69]. In this
case, the mean number of stationary points can be expressed as

〈N〉 =

〈∣∣∣∣det

(
δij +

Jij
µ

)∣∣∣∣
〉
, (E.33)

with Jij a random Gaussian symmetric matrix with correlations

〈JijJkl〉 = 2v2 (δikδjl + δijδkl + δilδjk) . (E.34)
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The same transformation as in Sec. 4.3.4 can then be applied in order to write 〈N〉 as
〈N〉 = lim

ε→0+
lim
n→0

〈
Kn−1
ε

〉
, (E.35)

with
〈
Kn−1
ε

〉
=

∫ N∏

i=1

n−1∏

a=1

dφai dϕ
a
i

2π
exp

{
Ni

2
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a

(paa − qaa)−
εN

2

∑

a

(paa + qaa)

− N

8m2

∑

a,b

(
paapbb + qaaqbb − 2paaqbb + 2p2

ab + 2q2
ab − 4r2

ab

)
}
.

(E.36)

where the notations pab, qab and rab were introduced in the above and withm = µ/(2v
√
N).

The above integral can then be computed through a saddle-point evaluation. Within the
diagonal replica symmetric ansatz of Sec. 4.3.9,




pab = ip̂δab ,

qab = −iq̂δab ,
rab = 0 ,

(E.37)

the associated saddle point equations read




1

2
+
q̂ − p̂
4m2

− 1

2p̂
= 0 ,

1

2
+
p̂− q̂
4m2

− 1

2q̂
= 0 ,

(E.38)

The above system has three solutions. The �rst one is symmetric and reads
p̂ = q̂ = 1 . (E.39)

If selected, it corresponds to
N ∼ 1 (E.40)

The other two couple of solutions are real for m > 1. Each of these solution breaks the
p̂↔ q̂ symmetry. They read

p̂ = m
(
m−

√
m2 − 1

)
, q̂ = m

(
m+

√
m2 − 1

)
, (E.41)

and

p̂ = m
(
m+

√
m2 − 1

)
, q̂ = m

(
m−

√
m2 − 1

)
, (E.42)

If selected, they both correspond to

〈N〉 ∼ exp

(
−N

(
1−m2

2
+ lnm

))
. (E.43)

The issue of the saddle point selection can be tackled using arguments similar to those of the
previous case. We have hence seen that the phase transition of [69] can be explained using
the same replica representation of the absolute value of a determinant than the one used
in Sec. 4.3.4. The diagonal replica symmetric ansatz perfectly accounts for this transition
(at least at the exponential level and beside the �uctuating determinant problem raised in
Sec. E.0.4). In the phase with exponentially many stationary points, the p̂ ↔ q̂ symmetry
is broken.
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